Early-Life Stress Induces Long-term Morphologic Changes in Primate Brain

Simona Spinelli, PhD; Svetlana Chefer, PhD; Stephen J. Suomi, PhD; J. Dee Higley, PhD; Christina S. Barr, VMD, PhD; Elliot Stein, PhD

Presented by Zain, Isabella, and Patricia

INTRODUCTION

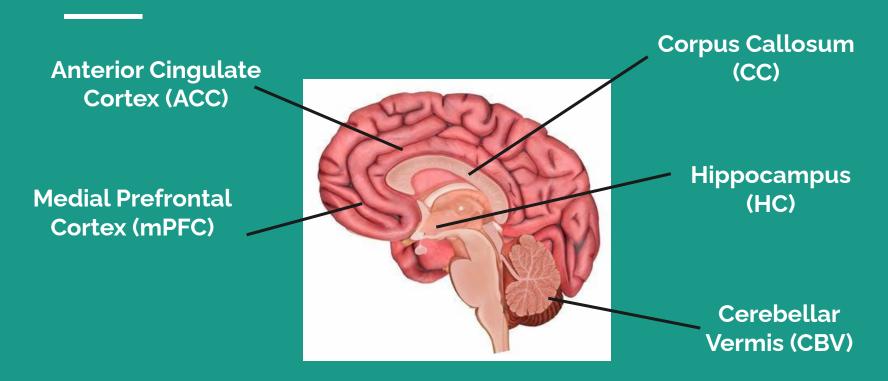
The study focuses on how early-life stress can affect primates' chances on developing neuropsychiatric disorders

Stress is a known risk factor in developing psychiatric disorders

Study induces stress by separating Rhesus Monkeys from their mothers/parental figures for 6 months in early childhood

Peer Raising (Separating participants from parental figures) has been used in past studies as well to cause stress

Trauma in one's early life has been shown to affect regions in the brain as well, such as an increased cortisol and norepinephrine response to subsequent stressors.


INTRODUCTION (cont.)

Rearing Condition: Mother reared & peer reared

Study took place at the National Institute of Health Animal Center

Objective: To study how early stressors in one's life may affect the risk of neuropsychiatric disorders in Rhesus Monkeys

Regions of Interest

Frequently Used Terms

CSF Sample: a way of looking for conditions that affect your brain and spine. It's a series of laboratory tests performed on a sample of CSF which is the clear fluid that cushions and delivers nutrients to your central nervous system (CNS).

Cortisol Levels: the level of a steroid hormone made by your adrenal glands. It helps your body respond to stress, regulate blood sugar, and fight infections.

Rater: when a human evaluator subjectively judges the response of a patient to a medical treatment

Volumetric Differences: changes in image features that are solely related to the progression or regression of a particular disease or to a pathomorphological condition

Hypothesis: Stress-sensitive brain regions which are the region of interest would be smaller in juvenile PR monkeys as compared with MR monkeys

Design of study

28 rhesus monkeys

Aged 23-32 months

13 males and 15 females

Peer rearing vs. Mother rearing

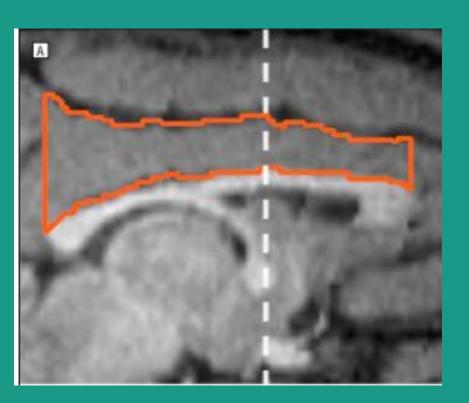
Mother Rearing (MR)

15 monkeys

Reared with mothers and fathers in social groups

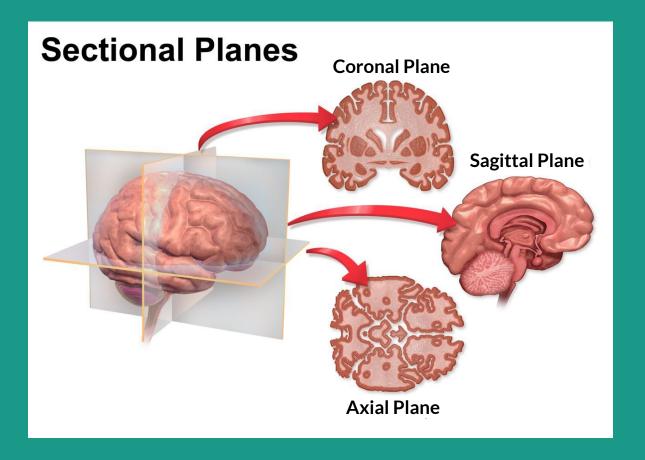
Benefit: social interaction and support

Peer Rearing (PR)



Neurochemical sampling & Analyses

CSF and blood samples were collected


Activity of HPA axis and serotonin system may be related to regional structural changes.

Brain Image Acquisition and Analyses

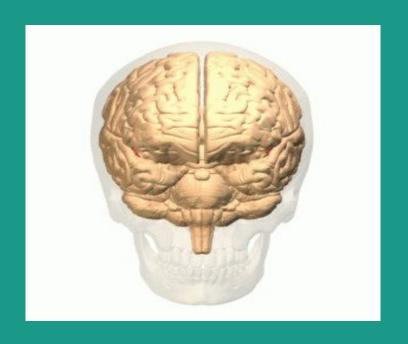
Anatomical Subdivisions

Predictors of the Volumetric Differences

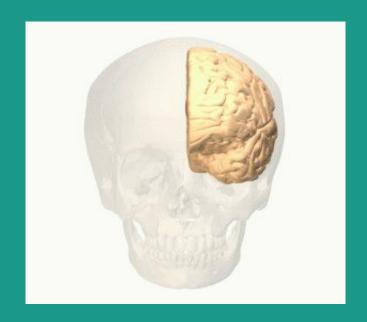
PEER REARED VS MOTHER REARED SEX: FEMALE VS MALE 5-HIAA: CSF SEROTONIN PLASMA & CSF CORTISOL

DATA ANALYSES

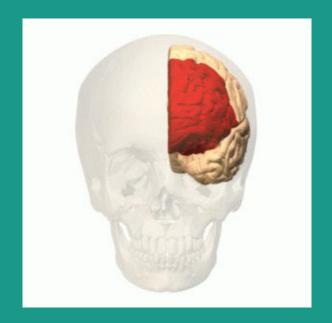
StatView 5.0.1 software

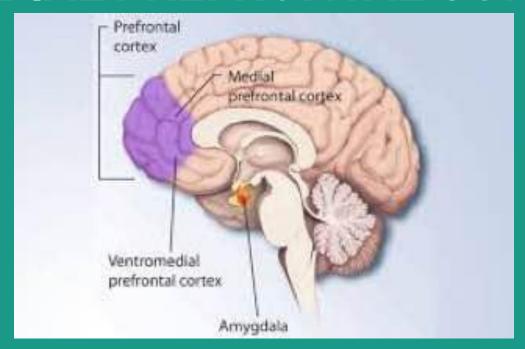

Kolmogorov-Smirnov normality test Pearson Correlation (R)

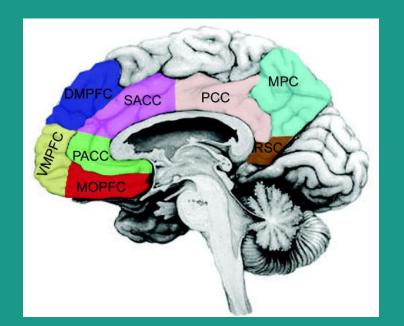
P-values for each statistical analysis

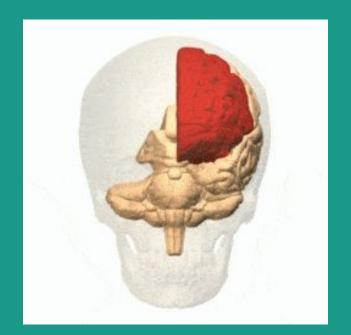

RESULTS: Physiologic data in MR & PR

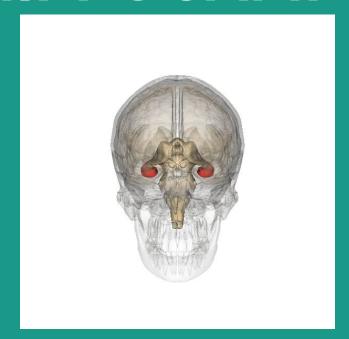
	Mean (SEM)				
Variable	MR Monkeys	PR Monkeys	Statistical Analysis		
Age, mo	27.40 (0.90)	26.39 (0.33)	$F_{1,24}$ =0.89; P >.35		
Weight, kg	3.61 (0.13)	3.44 (0.09)	$F_{1.24}$ =0.96; P >.33		
Cortisol, µg/dL	33.02 (1.22)	34.62 (1.80)	$F_{1.24}$ =0.43; P >.23		
5-HIAA,	268.18 (16.18)	241.28 (13.85)	$F_{1.24}$ =1.51; P >.51		

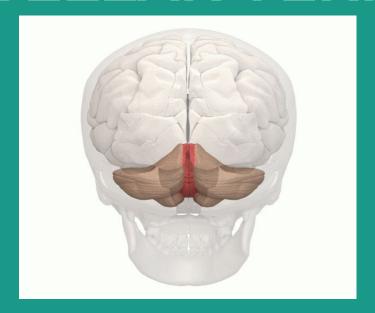

BRAIN ANATOMICAL MEASURES

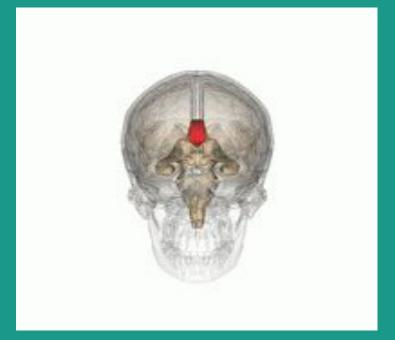

CINGULATE CORTEX


PRE-FRONTAL CORTEX


MEDIAL PREFRONTAL CORTEX

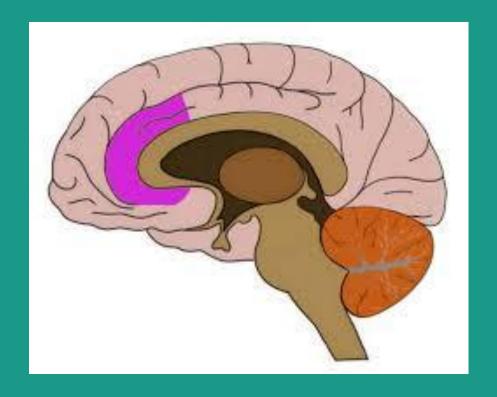

DORSOMEDIAL PREFRONTAL CORTEX


PREFRONTAL LOBE


HIPPOCAMPUS

CEREBELLAR VERMIS

CORPUS CALLOSUM


NORMALISED AND ABSOLUTE VOLUMES OF BRAIN AREAS MEASURED IN MR & PR GROUPS

Brain Area	Mean (SEM)					
	Normalized Volume ^a		Absolute Volume, mm²			0
	MR Monkeys	PR Monkeys	MR Monkeys	PR Monkeys	Absolute Volume Difference, %	Statistical Analyses for Normalized Values
ICV	77.7		91 121.10 (1904.22)	92 561.94 (2413.57)	1.61	171
dACC	5.29 (0.13)	5.74 (0.17)	481.98 (15.84)	531.71 (21.87)	10.32	F _{1.24} =4.46; P<.05
PCC	10.81 (0.27)	10.93 (0.22)	984.99 (32.91)	1011.61 (34.23)	2.70	F _{1.24} =0.07; P>.79
Right mPFC	7.59 (0.14)	7.99 (0.23)	692.13 (19.16)	741.37 (23.37)	7.11	F _{1.23} =2.20; P>.15
Left mPFC	7.53 (0.14)	7.90 (0.23)	685.99 (18.90)	734.04 (23.87)	7.00	F _{1,23} =1.87; P>.19
Right dmPFC	6.12 (0.13)	6.64 (0.18)	557.97 (16.43)	616.35 (16.78)	10.46	F _{1,23} =6.37; P<.02
Left dmPFC	6.15 (0.12)	6.67 (0.16)	560.57 (15.4)	618.74 (16.93)	10.38	F _{1,23} =6.88; P<.02
Right PFL	35.31 (0.50)	36.13 (0.91)	3218.09 (80.31)	3336.38 (100.03)	3.68	F _{1.24} =0.52; P>.47
Left PFL	36.42 (0.50)	36.68 (0.81)	3317.83 (79.04)	3393.01 (109.48)	2.27	F _{1.24} =0.08; P>.77
Right HC	5.31 (0.11)	5.18 (0.12)	481.66 (8.45)	479.28 (16.06)	-0.49	F _{1.24} =0.48; P>.49
Left HC	5.16 (0.10)	5.04 (0.12)	467.77 (6.90)	465.82 (13.44)	-0.42	F _{1,24} =0.52; P>.47
CC	125.21 (1.20)	125.28 (1.81)	31.79 (0.82)	32.21 (1.15)	1.32	F _{1.24} =0.03; P>.87
CBV	254.66 (2.09)	264.43 (1.56)	131.99 (2.31)	142.93 (2.66)	8.29	F _{1,24} =14.33; P<.01

CORRELATION WITH BASELINE PLASMA CORTISOL & CSF 5-HIAA CONCENTRATIONS

Brain Area	Cortisol, µg/dL	5-HIAA, pmol/mL
dACC	R=0.18; P>.35	R=0.16; P>.44
Right dmPFC	R=0.01; P>.97	R=0.40; $P<.05$
Left dmPFC	R=0.12; P>.54	R=0.37; $P>.06$
CBV	R=0.25; P>.19	R=0.01; $P>.97$

Anterior Cingulate Cortex

Cellular Changes

Abnormal ACC development could be mediated by several cellular processes

Conclusion

Peer rearing during infancy induces enlargement in stress sensitive brain regions

Questions?