Student Presenter: Sofia Marino Mentor: Kyla Abellán-Álvaro et al. Journal of Neurodevelopmental Disorders (2021) 13:59 https://doi.org/10.1186/s11689-021-09409-7

Journal of Neurodevelopmental Disorders

RESEARCH

MeCP2 haplodeficiency and early-life stress interaction on anxiety-like behavior in adolescent female mice

María Abellán-Álvaro¹, Oliver Stork², Carmen Agustín-Pavón¹ and Mónica Santos^{3*}

Open Access

Introduction: Early life stress

X <u>Objective:</u>

- Analysis of correlation between ELS and development of future psychiatric conditions (Anxiety, Depression, Stress)
- X Conclusion: ELS is major risk factor
 - Adverse events during this period of development permanently alter epigenetic markers
 - × Effect regulation of stress response in future

Introduction: MeCP2

- X <u>Objective:</u>
 - Analysis of correlation between MeCP2 and development of future psychiatric conditions (Anxiety, Depression, Stress)
 - MeCP2: Protein that assists in transcriptional regulation, epigenetic programs, mircoRNA processing and chromatin remodeling
 - In Human System: Key Role in facilitating many biological processes relating to neuron gene expression
 - CRH (Corticotropin-releasing hormone)
 - AVP (Arginine Vasoprestine)
 - Both control secretion of
 - corticosteroids(stress-regulating hormone)
 - ✗ Correlation between MeCP2 and Neurodevelopmental diseases

Introduction: Connecting ELS and MeCP2 deficiency

 Analysis of connection/similarities between MeCP2 deficiency and ELS

Results suggest these factors result in similar increased vulnerability development of future psychiatric conditions Hypothesized that this might suggest that ELS is a MeCP2 dependant process

Introduction: Rett syndrome (RTT)

Caused by MeCP2 mutations and deficiency <u>Symptoms:</u> loss of speech, intellectual disability, repetitive behavior, autistic features, altered anxiety behavior

Individuals also show reduced cortisol concentration in bloodstream

Exhibit high anxiety and depression phenotypes

Primary research question

Does MeCP2 deficiency and early-life stress interact with the development of abnormal anxious responses through dysfunctional epigenetic programming of the HPA axis?

Methods

<u>Groups</u>: MeCP2 deficiency mice (*MeCP2*.het) vs. wild-type

<u>Treatment</u>: maternal separation vs. no maternal separation

Measures:

Anxiety-like behaviors: elevated plus maze, open field

Depression-like behaviors: forced-swim test

1,0

1- F=ma

Pa: Paraventricular hypothalamic nucleus **PV:** Paraventricular thalamic nucleus **BSTLD:** Bed nucleus of the stria terminalis, lateral division, dorsal part LSV: lateral septum DG: Dentate gyrus

MS

Naive

Н

Fig 3

Paraventricular hypothalamic nucleus

CRH + cFos co-expression

AVP + cFos co-expression

Main takeaways from results

- Inverse effects of MeCP2 deficiency and ELS in mice vs humans
 - X Mice: deficiency and ELS leads to reduced anxiety-like behaviors
 - Humans: deficiency and ELS lead to more vulnerability through epigenetic marks

Key Findings:

- MeCP2 deficiency and MS prevent activation of CRH neurons
 - CRH pathway is MeCP2 dependent and plays a key role in controlling neuron activity in stress-related situations
- MeCP2 is essential for proper functioning of HPA axis(hypothalamic-pituitary-adrenal axis)
 - Axis mediates effects of stressors
 - Lack of MeCP2 or ELS increase vulnerability of future psychiatric conditions b/c they interfere with axis

Conclusion + Future directions + Lingering questions

-Potential in using the CRH pathway and introduction of MeCP2 protein to treat anxiety levels in RTT patients

