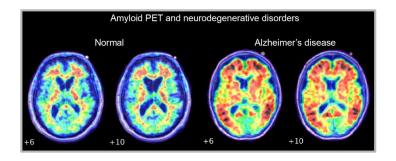
EEG Entropy in REM Sleep as a Physiologic Biomarker in Early Clinical Stages of Alzheimer's Disease

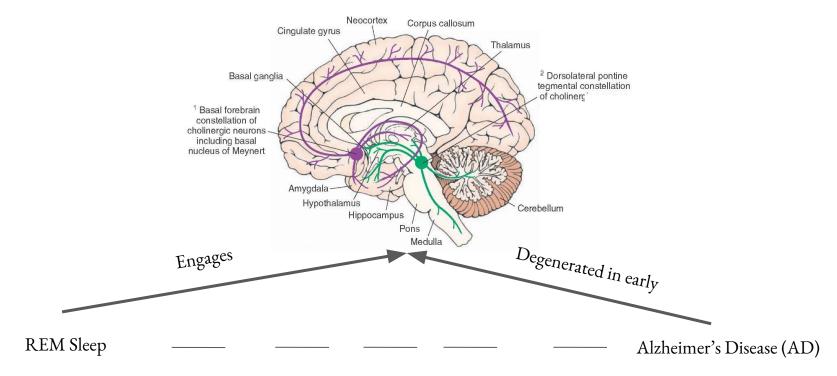
By Metok Kogyal and William Bankhead


Objective:

To evaluate MFDE in awake and sleep EEGs as a potential biomarker for AD.

Background: Alzheimer's Disease (AD) Biomarkers

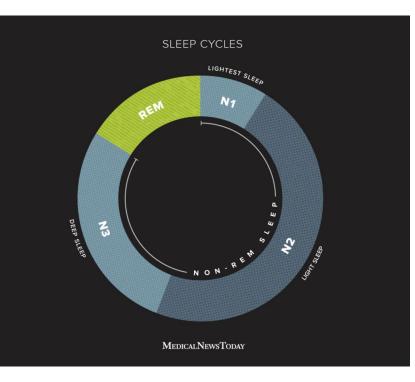
A biomarker is a measurement that indicates the status of cells or organisms in the body, and can signal the presence of a disease.

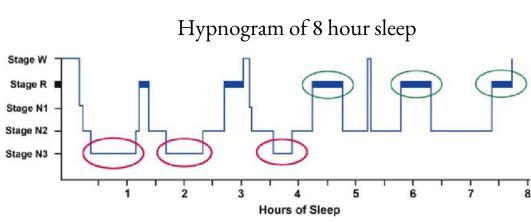

- amyloid and tau assessments w/PET imaging
- cerebrospinal fluid (CSF) analysis
- blood-based measurements in conjunction with ...
 - MRI measures of atrophy
 - CSF and blood analytes
 - fluorodeoxyglucose PET imaging
 - functional MRI
 - electroencephalography (EEG)

Background: EEG as a Biomarker for AD

- Scalp EEGs considered effective due to high temporal resolution measurements
- Many study awake-resting state EEG (rsEEG)
 - typically based on relative power spectral density (rPSD)
 - considered controversial, insufficient evidence to use as a biomarker
- Sleep EEG as an alternative
 - utilizes rapid eye movement (REM) sleep due to effect of AD on cholinergic neurons
 - even in NREM sleep that AD-like symptoms take effect
 - $\circ \quad$ past study supports method of observing REM sleep for diagnosing AD
 - used measurements of slow-to-fast activity ratio of the power spectral density (SFAR-PSD)
 - slow frequencies associated with delta and theta, fast frequencies associated with alpha and beta

Background: Basal Forebrain Cholinergic Neurons (Purple)


Background: EEG Entropy


Nonlinear dynamical approaches are best suited to measure constantly adapting cortical activity.

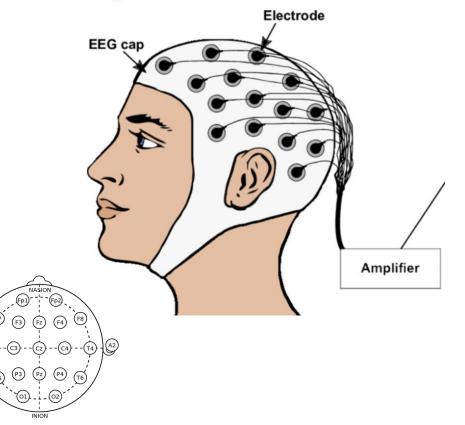
- Entropy generally used to measure nonlinear dynamics of EEG
- Still need to account for multiple-time scales
 - solution: multi scale fluctuation dispersion energy (MFDE)
 - MFDE can detect EEG fluctuation changes
 - \circ ^ can be valuable in distinguishing AD from healthy controls

Methods

5 Stages of Sleep

Methods: EEG

Ambulatory EEG- Long-term monitoring


Convenient

Low cost

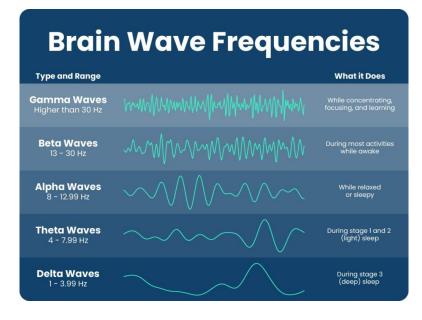
10 - 48 hours

Scored using 5 sleep stages:

Regions: International 10-20 system

Methods: EEG Sleep Waves:

Relative alpha power = power of alpha band / total power in the frequency band


Alpha: 8-12 Hz - relaxed

Delta: 0.5-4 Hz - deep sleep

Note: REM sleep is similar to the Awake stage,

therefore associated more with alpha waves compared to

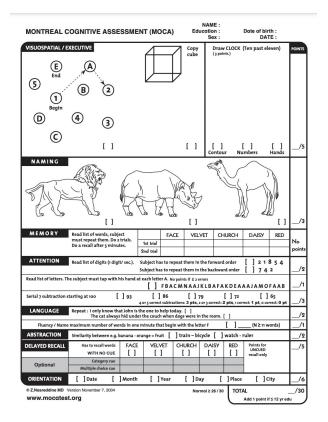
delta waves.

Table 1: Demographics

35 cognitively normal health controls

23 participants with mild cognitive impairment (MCI)

19 participants with mild dementia due to AD


s	tudy population demo	Table 1 graphics and sleep m	nacro-architecture	
	HC	MCI	DEM	ANOVA p
Participants (n)	35	23	19	_
Age, y (SD)	75.5 (6.9)	75 (6.9)	72.2(6)	NS
Female (# / %)	20/57%	15/65%	9/47%	NS
Years of Education (SD)	16.9 (2.7)	16.2 (2.3)	15.3 (3.4)	NS
Global CDR score (SD)	0 (0)	0.5 (0)	1 (0)	
Cholinesterase inhibitor use (# / %)	0/0%	9/39%	13/68%	p = 1e-8;
MoCA score (SD)	28 (1.8)	23.3 (3)	13.9 (6.4)	HC versus MCI, $p = 0.0004$; HC versus DEM $p = 1e-8$; MCI versus DEM, $p = 0.028$ p = 2e-15; HC versus MCI, $p = 1e-04$; HC versus DEM $p = 9e-10$; MCI versus DEM, $p = 3e-9$
Sleep Macro-Architecture	375 (88)	368 (105)	406 (99)	NS
Total sleep, min (SD)		· · ·		NS
N1 sleep, min (SD) N2 sleep, min (SD)	57 (29) 227 (72)	46 (24) 216 (73)	51 (26) 264 (92)	NS
N3 sleep, min (SD)	1 (3)	8 (21)	6 (18)	NS
REM sleep, min (SD)	89 (39)	98 (53)	85 (44)	NS
% N1 sleep	15% (7%)	13% (8%)	13% (7%)	NS
% N2 sleep	60% (10%)	59% (12%)	64% (13%)	NS
% N3 sleep	0.2% (0.8%)	2% (6%)	1.4% (4.3%)	NS
% REM sleep	24% (9%)	25% (10%)	21% (9%)	NS
SD, standard deviation.				

Cognitive Tests:

Montreal Cognitive Assessment (MoCA) -

Scored on 30 points and administered in approximately 10 minutes.

 Short-term memory, Visuospatial abilities, Executive functions, Attention, concentration, and working memory, Language Orientation to time & place
a score of 26 or above is considered normal.

Results

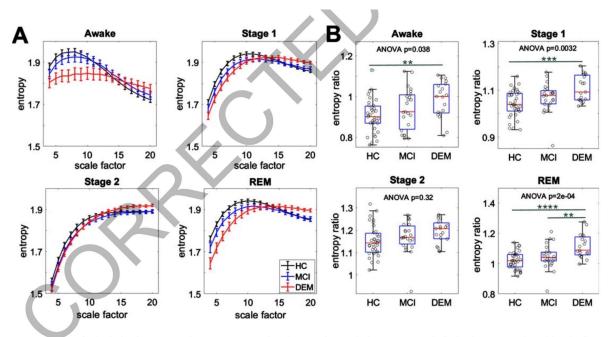
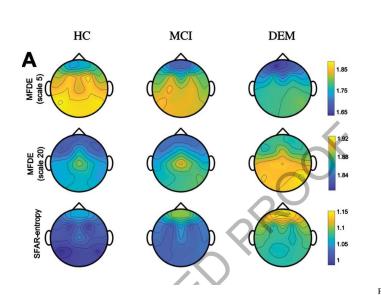



Fig. 1. Assessment of whole-brain averaged MFDE across the sleep-wake cycle in AD. A) Whole brain-averaged multiscale fluctuation dispersion entropy (MFDE) measured from EEG across awake and sleep states in 35 HC (black), 23 MCI (blue), and 19 DEM (red) participants. B) Slow-to-fast activity ratio for MFDE (SFAR-entropy) across awake and sleep states for HC, MCI, and DEM. ANOVA p-values are shown for each boxplot (Bonferroni corrected). Statistically significant *post-hoc* comparisons with *p*-values<0.01, 0.001, and 0.0001 are shown with **, ***, and ****, respectively.

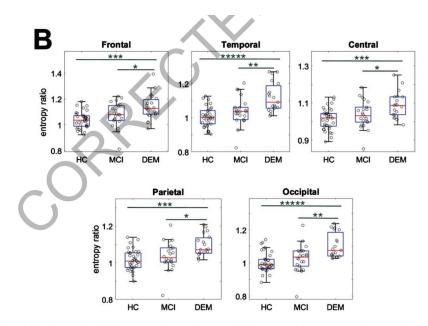
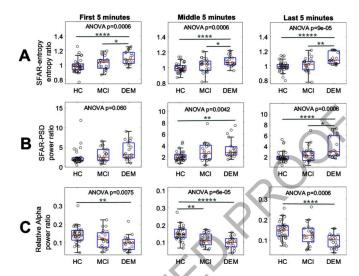



Fig. 2. Evaluation of regional REM sleep-associated MFDE changes in AD. A) Topoplots of averaged MFDE values during REM sleep at scale 5 (top row) and scale 20 (middle row), and the ratio of MFDE at scale 20 to scale 5 (SFAR-entropy, bottom row) for HC, MCI, and DEM. B) SFAR-entropy in the frontal (ANOVA, p = 1e-03), temporal (ANOVA, p = 2e-03), central (ANOVA, p = 2e-03) parietal (ANOVA, p = 1e-03), and occipital (ANOVA, p = 3e-05) regions for HC, MCI, and DEM. ANOVA p-values are Bonferroni corrected. Group differences with p-values(0.05, 0.01, 0.001, 0.0001, and 0.00001 are shown with *****, *****, and *****, respectively.

Coefficient of variation (CV) for SFAR-entropy, SFAR-PSD, and relative alpha power in HC, MCI, and DEM SFAR-entropy SFAR-PSD Relative alpha power ANOVA *p*-value CV in HC (mean \pm SD) 0.06 ± 0.02 0.45 ± 0.40 0.24 ± 0.07 p = 1e-09: entropy vs. PSD, p = 1e-09; entropy vs. alpha, p = 0.0047; PSD vs. alpha, p = 6e-04CV in MCI (mean \pm SD) 0.06 ± 0.03 0.40 ± 0.14 0.26 ± 0.06 p = 2e - 18;entropy vs. PSD, p = 1e-10; entropy vs. alpha, p = 2e-09; PSD vs. alpha, p = 4e-06

 0.26 ± 0.07

p = 1e - 16:

entropy vs. PSD, p = 1e-10;

entropy vs. alpha, p = 1e-10;

PSD vs. alpha, p = 0.016

 0.32 ± 0.10

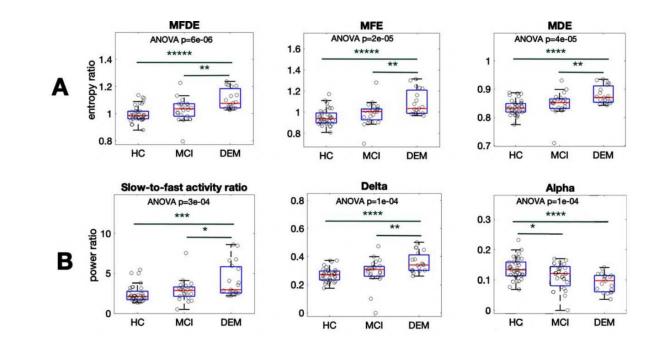

 0.06 ± 0.02

Table 2

SD, standard deviation.

CV in DEM (mean \pm SD)

Fig. 3. Assessment of SFAR-entropy and SFAR-PSD measures across REM cycles in the night. All measures were calculated in the occipital region. A) The slow-to-fast activity ratio of MFDE (SFAR-entropy) for the first, middle, and last 5 min of REM sleep, for HC, MCI, and DEM. B) SFAR-PSD for the first, middle, and last 5 min of REM sleep, for HC, MCI, and DEM. C) Relative alpha power for the first, middle, and last 5 min of REM sleep, for HC, MCI, and DEM. C) Relative alpha power for the first, middle, and last 5 min of REM sleep, for HC, MCI, and DEM. C) Relative alpha power for the first, middle, and last 5 min of REM sleep, for HC, MCI, and DEM. ON the sleep of the state of the state

Figure 5: Global Cognitive Function

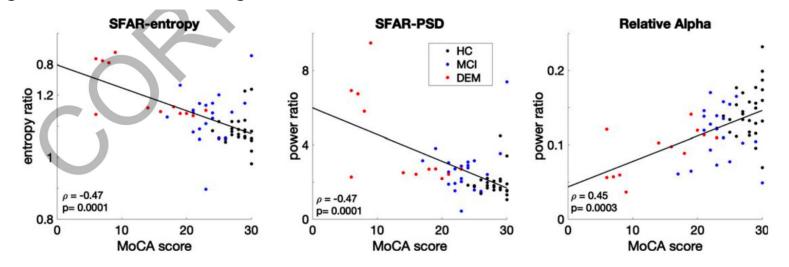


Fig. 5. Correlation between SFAR-entropy, SFAR-PSD, and relative alpha with MoCA scores. SFAR-entropy (left), SFAR-PSD (middle), and relative alpha (right) were calculated from the occipital region during REM sleep. Spearman correlations are shown.

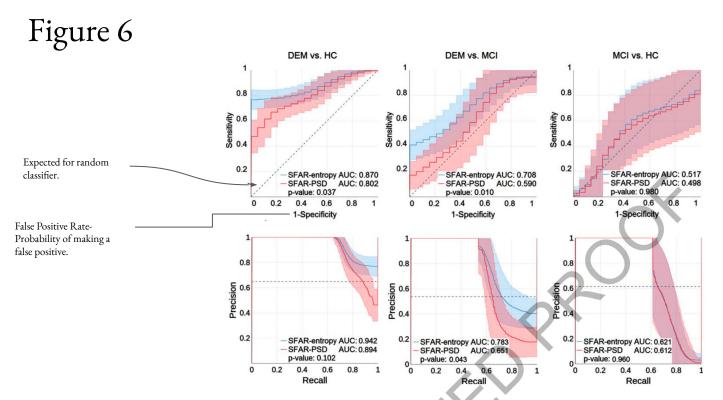


Fig. 6. Classification performance of SFAR-entropy and SFAR-PSD in REM sleep in discriminating HC, MCI, and DEM. ROC (top row) and PR (bottom row) curves for logistic regression classifiers based on SFAR-entropy (blue) and SFAR-PSD (red), for discrimination between DEM versus HC (left), DEM versus MCI (middle), and MCI versus HC (right). Both SFAR-entropy and SFAR-PSD were calculated from the occipital region during REM sleep. Shaded regions represent the 95% confidence intervals for each curve based on bootstrapping. Black dashed lines represent the expected performance for a random classifier.

Discussion: What this paper accomplishes

This paper evaluates the use of EEG entropy as a potential test and biomarker for early stages of Alzheimer's.

- 1. Slow-to-fast-activity MFDE ratio (SFAR-entropy) differentiated DEM from both MCI and HC in REM sleep. (Just 5 minutes of REM sleep was sufficient to differentiates)
- 2. Pattern of discrimination remained stable across REM cycles throughout the night.
- 3. Increases in SFAR-entropy and SFAR-PSD were associated with worse performance on the Montreal Cognitive Assessment.
- 4. On the logistic regression models, the SFAR-Entropy model significantly distinguished between DEM vs. HC and DEM vs. MCI, outperforming the SFAR-PSD model in accuracy and variability.

Discussion: Strengths & Weaknesses

This paper evaluates the use of EEG entropy as a potential test and biomarker for early stages of Alzheimer's.

- 1. Well-characterized clinical populations of both DEM and MCI (similar age and demographics)
- 2. Correlations shown across a wide range of measures (entropy and spectral measures) with similar trends.
- 3. Successful trials for differentiating between groups DEM vs. HC and DEM vs. MCI.

- 1. The methods in which patients were gathered: no biomarker/neuropathological evidence.
- 2. Need further evidence to form a conclusion on the NREM3 sleep state.

Discussion Questions:

1. What are some of the advantages of using EEG entropy as a biomarker for the early stages of Alzheimer's?

2. How might a clinician use these results in testing for Alzheimer's related dementia ?

3. What are some future areas of study that could be explored, based on the results? Consider strengths and limitations of this study.