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9

Abstract Schematic prior knowledge can scaffold the construction of event memories during10

perception and also provide structured cues to guide memory search during retrieval. We11

measured the activation of story-specific and schematic representations using fMRI while12

participants were presented with 16 stories and then recalled each of the narratives, and related13

these activations to memory for specific story details. We predicted that schema representations14

in mPFC would be correlated with successful recall of story details. In keeping with this prediction,15

an anterior mPFC region showed a significant correlation between activation of schema16

representations at encoding and subsequent behavioral recall performance; however, this mPFC17

region was not implicated in schema representation during retrieval. More generally, our18

analyses revealed largely distinct brain networks at encoding and retrieval in which schema19

activation was related to successful recall. These results provide new insight into when and20

where event knowledge can support narrative memory.21

22

Introduction23

How dowe remember real-world events? Over the past half-century, the cognitive psychology liter-24

ature has shown that we leverage event schemas – our knowledge of how events generally unfold25

– to support memory for specific details from those events (for reviews of early work see Graesser26

and Nakamura, 1982; Alba and Hasher, 1983; Brewer and Nakamura, 1984; and for more recent27

cognitive neuroscience studies see van Kesteren et al., 2012; Ghosh and Gilboa, 2014; Schlichting28

and Preston, 2015; Gilboa and Marlatte, 2017; Preston and Eichenbaum, 2013; Wang and Morris,29

2010). For example, when we go into a restaurant, we can anticipate a stereotyped sequence of30

events that includes getting seated, ordering food, and eating (Bower et al., 1979). The cognitive31

psychology literature has demonstrated that knowledge of this “restaurant script” can help mem-32

ory in at least two possible ways: At encoding, the restaurant script can provide a scaffold onto33

which we can attach specific event details (e.g., Bransford and Johnson, 1972; Alba and Hasher,34

1983; Abbott et al., 1985; Tompary and Thompson-Schill, 2021; McClelland et al., 2020); later, at35

retrieval, the restaurant script provides a structured way of cueing memory, by stepping through36

the various stages of the script in sequence (e.g., Schank and Abelson, 1975; Anderson and Pichert,37

1978; Bower et al., 1979; Alba and Hasher, 1983;Mandler, 2014).38

The goal of the present study is to understand the neural mechanisms of how event schemas39
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support memory for real-world, temporally-extended events, both at encoding and at retrieval. To40

meet this objective, we track schema representations in the brain during both encoding and re-41

trieval of temporally-extended events, and then relate these neural measures to behavioral recall42

on a story-by-story basis. While there has been an explosion of recent neuroscientific research into43

how schemas benefit memory (Maguire et al., 1999; van Kesteren et al., 2010a, 2013, 2018, 2020;44

Spalding et al., 2015; Liu et al., 2018; Brod et al., 2015; Brod and Shing, 2018; van Buuren et al.,45

2014; Wagner et al., 2015; Bein et al., 2014; Schlichting and Preston, 2016; Tse et al., 2007, 2011;46

Webb et al., 2016; Gilboa and Marlatte, 2017; Raykov et al., 2021; Reagh et al., 2021), most of this47

research has relied on univariate contrasts of brain activations evoked by schema-consistent vs.48

schema-inconsistent learning materials, rather than trying to track the degree to which schematic49

information is represented for individual stimuli. Also, existing studies have mostly looked at rela-50

tively simple forms of schematic knowledge (e.g. seashells at the beach vs lamps at a playground;51

McAndrews et al., 2016) rather than knowledge about the structure of real-world, temporally-52

extended events. Lastly, because existing paradigms have mostly tested memory with recogni-53

tion or short associative recall tasks, the neural mechanisms of how schemas are instantiated and54

maintained during free recall of real-world events have not been thoroughly explored.55

The present study builds on our prior work (Baldassano et al., 2018), in which participants were56

scanned as theywatchedmovies or listened to audio narratives, half of which followed a restaurant57

script and half of which followed an airport script. A key benefit of this paradigm is that it allowed58

us to identify sequences of neural patterns that are unique to particular stories (e.g., sequences59

of patterns that are reliably invoked by a particular airport narrative, more so than by other air-60

port narratives) and sequences of patterns that represent the underlying script (e.g., sequences of61

patterns that are shared across different airport narratives, more so than across restaurant and62

airport narratives). Baldassano et al. (2018) leveraged this to identify a range of areas that repre-63

sented schematic information (i.e., restaurant vs. airport) in a modality-independent fashion. Of64

the ROIs investigated, medial prefrontal cortex (mPFC) was the only one that was sensitive to the65

specific temporal order of events in a schema. Here, we extend the Baldassano et al. (2018) results66

by analyzing neural and behavioral data from a separate phase of the experiment (not reported in67

the 2018 study) in which participants were scanned while freely recalling each of the 16 narratives.68

This allowed us to look at how schemas are represented in the brain during recall, and how neural69

measures of schema representation at encoding and recall are related to recall of specific story70

details, on a story-by-story basis.71

Because mPFC has been frequently implicated in previous schema research (e.g., van Kesteren72

et al., 2010a, 2013, 2014, 2020; Baldassano et al., 2018; Raykov et al., 2020, 2021; Reagh et al., 2021)73

– in particular with regard to integrating new knowledge into existing schemas (Preston and Eichen-74

baum, 2013; Schlichting and Preston, 2015; Gilboa and Marlatte, 2017; Tse et al., 2007;Wang and75

Morris, 2010; van Kesteren et al., 2012) – we predicted that robust mPFC schema representations76

at encodingwould lead to improved subsequentmemory for the narrative. Based on prior work im-77

plicating the hippocampus in schema representation (van Kesteren et al., 2013, 2014, 2020; Brod78

et al., 2015; Liu et al., 2017; Raykov et al., 2020; Webb et al., 2016; van der Linden et al., 2017;79

Bonasia et al., 2018), we also hypothesized that hippocampal schema representations at encoding80

would support subsequent memory; more specifically, based on work showing that hippocampus81

has a coarse-to-fine gradient of representations along its long axis (Collin et al., 2015;GuoandYang,82

2020; Audrain and McAndrews, 2020; Poppenk et al., 2013; Brunec et al., 2018; Schlichting et al.,83

2015; Sekeres et al., 2018), we predicted that anterior hippocampus (which has coarser and thus84

more general representations than posterior hippocampus) would contain schematic representa-85

tions that contribute to subsequent memory, whereas posterior hippocampus would contribute86

to subsequent memory by representing story-specific details.87

As described below, our prediction about mPFC was upheld: An anterior region of mPFC was88

among thenetwork of cortical regions – also including left visual cortex, right lateral superior frontal89

gyrus (SFG), prostriata, and entorhinal cortex – where the degree of schema representation at90
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encoding predicted subsequent memory for story details. Our prediction about hippocampus re-91

ceived partial support: While the degree of schema representation in anterior hippocampus during92

encoding showed anonsignificant, positive numerical relationship to subsequentmemory for story93

details, posterior hippocampus showed a negative correlation between schema representation at94

encoding and subsequentmemory, and a positive correlation between the representation of story-95

specific details at encoding and subsequent memory – both of which are consistent with a role for96

posterior hippocampus in encoding story-specific (i.e., non-schematic) information. Interestingly,97

the set of regions where schema representation at encoding predicted recall of story details was98

mostly distinct from the set of regions where schema representation at retrieval predicted recall of99

story details – the latter analysis revealed a distinct network including bilateral visual cortex, right100

superior parietal lobule (SPL), bilateral middle frontal gyrus (MFG), bilateral medial SFG, bilateral101

parahippocampal cortex (PHC), left fusiform gyrus, right angular gyrus (AG), as well as bilateral102

posterior superior temporal sulcus, but notably excluding mPFC. This pattern of results provides103

converging neural support for the idea that schemas play different roles at encoding and retrieval104

in supporting memory for story details.105

Results106

Our primary goal was to understand how we use schemas at encoding and recall to support mem-107

ory for recently encoded naturalistic stories. To do this we used 16 narratives that conformed108

to one of two schematic scripts (Bower et al., 1979): eating at a restaurant or catching a flight at109

an airport (Fig 1). Each narrative followed a four-event temporal structure specific to its schema110

(restaurant stories: entering the restaurant, being seated, ordering and eating food; airport stories:111

entering the airport, going through security, boarding at gate, and getting seated on plane). During112

the encoding phase, participants were scanned while they watched or listened to each of these 3113

minute narratives. Afterwards, during the recall phase, participants were cued with the titles of114

each of the stories, and were asked to freely verbally recall one story at a time.115
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Figure 1. Methods. (A.) Stimuli. There were a total of 16 narratives (audiovisual clips or spoken narration): eight restaurant narratives and eight
airport narratives. Each narrative followed a four-event temporal structure specific to its schema (see text). (B.) Experimental protocol. After
Figure 1 continued on next page.
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Figure 1 continued.

participants encoded each of the narratives, they were then asked to freely recall each of them with a title cue only. (C.) Encoding story and
schema score. For each story in each participant, a spatial activity pattern was extracted for each of the four events in that story. We then
computed, for each participant, the 16 x 16 neural similarity matrix correlating the neural representations of each of the 16 stories in that
participant and the neural representations of each of the 16 stories, averaged across the other participants (see text for details). For each story
in each participant, we computed an encoding story score contrasting across-subject neural similarity to the same story (dark pink) vs. different
stories from the same schema (light pink); we also computed an encoding schema score contrasting across-subject neural similarity to different
stories from the same schema (dark blue) vs. different stories from the other schema (light blue). (D.) Reinstatement story and schema score.
We used Hidden Markov Models (HMMs) to measure the degree to which each of the 16 stories from the encoding phase was neurally
reinstated during recall of a given story (see text for details). This process yielded a 16 story x 16 story neural reinstatement matrix for each
participant. Analogously to C, for each recall we computed a reinstatement story score (contrasting how well the same story’s encoding pattern
was reinstated vs. other stories from the same schema) and a reinstatement schema score (contrasting how well other stories from the same
schema were reinstated vs. other stories from the other schema). (E.) Behavioral memory performance. Every participant’s free recall was
scored using a rubric to measure the number of story-specific details the participant provided. This matrix has been sorted such that the most
accurate recalls are in the bottom-left. Red and blue story labels indicate restaurant vs airport narratives, respectively. (F.) Predicting behavioral
memory performance. We used the 4 scores derived from C and D (encoding story/schema and reinstatement story/schema) in 4 separate
regression models to predict behavioral memory performance in E.

Neural story and schema scores116

Encoding scores117

We derived two types of neural scores that reflected the extent to which story-specific and general118

schematic informationwere represented during encoding (Fig 1C). These scores were computed in119

both searchlights and specific ROIs (cortical ROIs: mPFC, posterior medial cortex (PMC), AG, PHC,120

and SFG; hippocampal ROIs: full hippocampus, anterior hippocampus, and posterior hippocam-121

pus). Within each story, we computed the mean spatial pattern evoked during each of the four122

events for each participant. Then, for each pair of stories (call them story A and story B), we ap-123

plied leave-one-participant-out spatial intersubject correlation, correlating the four story A event124

patterns from the left-out participant with the four story B event patterns from the other partici-125

pants. As in Baldassano et al. (2018), this correlation was computed in an event-wise fashion (cor-126

relating event 1 in story A with event 1 in story B, event 2 in story A with event 2 in story B, and so127

on) and then the four event-wise correlations were averaged together to obtain a single correlation128

score for the pair of stories. To measure the degree of story-specific representation at encoding129

for a participant experiencing a particular story, we computed an encoding story score, operational-130

ized as the across-participant similarity to the representation of the same story, minus the average131

across-participant similarity to other stories from the same schema. To measure the degree of132

schematic representation at encoding, we computed an encoding schema score, operationalized as133

the average across-participant similarity to other stories from the same schema, minus the aver-134

age across-participant similarity to other stories from the other schema. For all analyses reported135

below on our specific a priori ROIs, we report multiple comparisons Bonferroni-corrected p-values,136

such that p-values for cortical ROIs (n=5) and hippocampal ROIs (n=3) were scaled by 5 or 3, respec-137

tively, to uphold a significance level of alpha = 0.05.138

Results from this encoding analysis were previously reported in Baldassano et al. (2018) us-139

ing a similar analysis pipeline. Encoding story scores were high across all of cortex (Fig 2A; q <140

0.05), including all of our cortical and hippocampal ROIs (all p < 0.01), with the strongest effects141

in posterior sensory regions. Strong encoding schema scores were obtained throughout the de-142

fault mode network (Fig 2B; p<0.01 for all cortical ROIs). Additionally, there were strong schematic143

patterns in anterior but not posterior hippocampus (p<0.01 for whole hippocampus and anterior144

hippocampus; p=0.27 for posterior hippocampus).145

Reinstatement scores146

To identify story-specific and schematic representations at recall, we measured the degree of neu-147

ral reinstatement of each story during each recall period (Fig 1D). Here, we build on prior work on148

neural reinstatement (e.g., Xue et al., 2010; Staresina et al., 2012; Ritchey et al., 2013;Wing et al.,149
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Figure 2. Neural story and schema strength during encoding and retrieval in whole-brain and specific
cortical and hippocampal ROIs. (A.) Encoding story scores. (B.) Encoding schema scores, (C.) Reinstatement
story scores. (D.) Reinstatement schema scores. All surface maps (A, B, C, and D) were colorized with z-scores
relative to the null distribution but thresholded via FDR correction for q<0.05 after extracting p-values from a
non-parametric permutation test. Plots depict effect sizes in ROIs, z-scored relative to the null distribution
(gray). Starred points indicate significant differences after Bonferroni correction for multiple comparisons. (E.)
Locations of our cortical ROIs.

2015; Tompary et al., 2016; Chen et al., 2017) by using a Hidden Markov Model (HMM; Baldassano150

et al., 2017) to track reinstatement of sequences of patterns from the encoding phase. We first151

created “encoding pattern templates” for each of the four events in each story by averaging the152

evoked response during encoding across all participants experiencing that event. We used these153

templates to construct 16 different HMMs (one for each story), where the states of each story-154

specific HMM corresponded to the sequence of four event patterns for that story during encoding.155

We then applied each of the 16 story-specific HMMs to each recall timeseries, to measure the de-156

gree to which each story’s sequence of patterns was reinstated in that recall timeseries. Essentially,157

this HMM-fitting process involved – for a given story-specific HMM (from story A) and a given recall158

timeseries (from story B) – trying to model story B’s recall timeseries under the assumption that it159

contained the same four “template” event patterns (in the same order) as story A. The result of the160

HMM-fitting process was to subdivide the story B recall timeseries into four contiguous sections161

that best matched the four encoding-event patterns from story A (see Methods for more details).162

To measure neural reinstatement, we took the average neural patterns from each of these four163

sections of the story B recall timeseries, and we correlated these patterns with the actual encoding164

templates from story A (i.e., we correlated the part of the recall timeseries that the HMMmatched165

to event 1 with the actual encoding pattern for event 1, likewise for events 2, 3, and 4, and then we166

averaged these four correlations together). By the end of this process, each of the 16 story recalls167

for a given participant had been compared to each of the 16 story templates from the encoding168

period. Analogously to the encoding period, we computed – for each participant and each story – a169

reinstatement story score comparing the reinstatement of the matching story to the reinstatement170

of other stories from the same schema, and a reinstatement schema score comparing the reinstate-171

ment of other studies from the same schema to the reinstatement of other studies from the other172

schema. These scores were computed in both searchlights and specific ROIs.173

We found significant reinstatement story scores in regions overlapping with the DMN, partic-174
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ularly lateral posterior SFG, central middle temporal gyrus, PHC, and AG with strongest effects in175

PMC (Fig 2C, q<0.05). Our specific ROI analyses (Fig 2C) also showed strong reinstatement story176

scores in the same regions such as PMC (p<0.01), PHC (p<0.01), AG (p=0.03) but not did not show177

effects inmPFC (p=0.49), SFG (p > 0.5), nor any of our hippocampal ROIs (full: p>0.5; anterior: p>0.5;178

posterior: p=0.27). For schema reinstatement, the searchlight analysis revealed positive reinstate-179

ment schema scores in left anterior temporal pole (AT) as well as a negative effect in areas overlap-180

ping with left lateral SFG, indicating that stories from the same schema were more differentiated181

in this region (versus stories from different schemas). Additionally, similar to our encoding results,182

our specific ROI analyses revealed strong schematic effects in anterior (p<0.01) but not posterior183

hippocampus (p> 0.5). In contrast to our encoding results, we did not find schema reinstatement184

effects in mPFC (Fig 2D, p>0.5) nor SFG (p=0.15). However, we did find schema reinstatement ef-185

fects in PMC (p<0.01), PHC (p<0.01), and AG (p<0.01).186

Predicting memory performance from story and schema encoding and reinstate-187

ment scores188

To identify the degree to which story-specific or schematic neural representations predicted later189

memory for story details, we ran four separate leave-one-subject-out linear regressions using each190

of the four neural story and schema scores as single predictor variables (i.e. encoding story, encod-191

ing schema, reinstatement story and reinstatement schema scores) and memory performance on192

individual stories (assessed as the number of story-specific details mentioned during free recall)193

as the outcome variable (Fig 1E). Note that the null distributions used to assess the statistical relia-194

bility of these regression results were constructed by scrambling the relationship between neural195

data and behavior within subjects (see Methods for more details); as such, significant results in-196

dicate a reliable within-subject predictive relationship between neural measures associated with a197

story and behavioral recall performance for that story.198

Memory as a function of encoding story and schema scores199

Encoding story scores predicted subsequent memory for story details in a very wide range of cor-200

tical regions (Fig 3A, q<0.05). In agreement with the searchlight analysis, we also found signifi-201

cant positive effects in our cortical and hippocampal ROIs (Fig 3A, p<0.01 for all regions, except202

for p=0.04 for anterior hippocampus). The correlation between encoding story scores and sub-203

sequent memory was significantly more positive for posterior vs. anterior hippocampus (t(58) =204

-74.74, p<0.001). We found a sparser set of regions when using encoding schema scores to predict205

behavior. Based on our searchlight results, the strongest positive effects were found in regions206

overlapping with the left primary visual cortex, prostriata, anterior mPFC, left posterior temporal207

sulcus, and left subcentral and postcentral gyrus (Fig 3B, q<0.05). Interestingly, we also found re-208

verse effects (with more schematic information at encoding predicting poorer story-specific mem-209

ory performance) in multiple regions including bilateral SPL (Fig 3B, q<0.05). When we looked for210

correlations between encoding schema scores and recall behavior in our cortical ROIs, we did not211

find any strong effects (Fig 3B), including our broad mPFC ROI, despite finding a correlation be-212

tween encoding schema scores and recall behavior in its most anterior portion via the searchlight213

analysis. Lastly, when we analyzed subsections of the hippocampus, we found opposite correla-214

tions between encoding schema scores and subsequent memory, with significant negative effects215

in posterior hippocampus (p<0.01) and numerically positive but non-significant effects in anterior216

hippocampus (p=0.26). The effects in these two subregions were significantly different from each217

other when we compared their model coefficients (anterior - posterior) across participants (t(58) =218

107, p<0.001).219

Memory as a function of reinstatement story and schema scores220

Reinstatement story scores were related to recall of specific story details in many regions, with the221

strongest effects in areas overlapping with bilateral PMC, right mPFC and right anterior temporal222
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Figure 3. Predicting behavioral memory for story details with neural measures from encoding and
recall. We predicted behavioral memory performance on held-out subjects based on each of our 4 neural
scores (from Fig 2), across the neocortex and in specific ROIs. (A.) Predicting memory scores using encoding
story scores. (B.) Predicting memory scores using encoding schema scores. (C.) Predicting memory scores
using reinstatement story scores. (D.) Predicting memory scores using reinstatement schema scores. All
surface maps were statistically thresholded by comparing model performance on held-out data to a null
distribution and then FDR correcting for q < 0.05. Surface maps are colored based on the correlation values
between neural scores and behavioral memory performance. All violin plots show R2 values describing model
performance z-scored relative to the null distribution. Starred points indicate significant differences after
Bonferroni correction for multiple comparisons. Point colors indicate directionality of prediction with red and
blue for positive and negative associations, respectively.
Figure 3–Figure supplement 1. Predicting PMC reinstatement story scores with encoding schema scores
across cortex

cortex (Fig 3C). These effects were also confirmed in our larger cortical ROIs: There were signifi-223

cant effects in mPFC, SFG, and AG, and the strongest effects were in PMC and PHC (Fig 3C). In our224

hippocampus ROIs, we found that reinstatement story scores in posterior and not anterior hip-225

pocampus positively predicted subsequent memory (Fig 3C); the effect for posterior hippocampus226

was significantly larger than the effect for anterior hippocampus (t(58) = -28.48, p<0.001). In the227

searchlight analysis with reinstatement schema scores as a predictor variable, the strongest signif-228

icant effects were in regions overlapping with bilateral primary visual cortices, bilateral posterior229

temporal sulcus, PHC, partial sections of medial SFG, right SPL, and lateral PFC (Fig 3D). There were230

no significant effects in the a priori cortical or hippocampal ROIs (Fig 3D). Additionally, because our231

PMC ROI was a strong predictor of story-specific behavioral memory and prior work implicates it232

in scene-specific representations (Chen et al., 2017), we wanted to determine how schematic rep-233

resentations across the brain at encoding relate to PMC’s story-specific representations at recall234

(Fig 3 Supp 1). We found that, across the brain, schematic representations in bilateral visual cortex,235

angular gyrus, and fusiform cortex were the best predictors of PMC’s reinstatement story effect.236
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Figure 4. Regions with significant schema effects and positive associations with subsequent memory. To combine the schema and
regression effect at encoding, we intersected the regions showing a positive encoding schema effect (Fig 2B, q<0.001) with the regions showing
a positive relationship between the encoding schema effect and memory behavior (Fig 3B, q<0.05); intersection shown in yellow. To combine
the schema and regression effect at recall, we intersected the regions showing a positive reinstatement schema effect (Fig 2D, q<0.001) with the
regions showing a positive relationship between the reinstatement schema effect and memory behavior (Fig 3D, q<0.05); intersection shown in
light blue. Regions in purple indicate overlap between encoding and retrieval schema networks.

Intersection of significant schema effects and subsequent memory effects237

To summarize the key regions in which schematic representations were robustly activated and sup-238

ported memory performance, we intersected regions of the brain that showed significant schema239

scores and also showed a positive correlation with later memory for story details. During encoding240

(Fig 4A), this conjunction analysis identified regions in visual cortex, left posterior temporal sulcus,241

prostriata, entorhinal cortex, left subcentral gyrus, postcentral sulcus, right lateral SFG, and an-242

terior mPFC. For retrieval (Fig 4B), we found effects in visual cortex, posterior superior temporal243

sulcus, left fusiform gyrus, right SPL, right AG, PHC, medial SFG, and middle frontal gyrus.244

mPFC clustering and mediation analysis245

K-means clustering246

Do separate sub-regions within mPFC serve separate functions in memory? Our results indicated247

that, during perception of schematic information, only themost anterior sections of mPFC showed248

a correlation between encoding schema scores and subsequent memory for story details (Fig 3B).249

Thus, in order to identify functional differences within mPFC, we ran a k-means clustering analysis.250

We first pooled the results of our 8 whole-brain searchlight results together (i.e. Fig 2 and Fig 3:251

story and schema encoding and reinstatement scores as well as their relationships to subsequent252

memory for story details) to obtain an eight-feature representation for each searchlight location253

(i.e., the eight features were the eight searchlight values for that location). We then ran a silhou-254
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Figure 5. Mediation analysis with mPFC subclusters. (A.) k-means clustering results. We performed
post-hoc k-means (k=2) clustering within a bilateral mPFC ROI using our searchlight results (Fig 2 and Fig 3) as
features. Encoding schema scores were numerically higher in posterior vs. anterior mPFC (first row).
Importantly, in keeping with our searchlight results, encoding schema scores in the most anterior cluster
(mPFC_c0, dark blue) were associated with increased memory performance. (B.)Mediation analysis. To
determine whether PMC story information at recall mediated mPFC’s impact on memory accuracy, we ran a
single-mediator model with mPFC_c0’s encoding schema score as the causal variable, PMC’s reinstatement
story score as the mediator, and rubric-derived memory scores as our outcome variable. We found that PMC
reinstatement story scores were a significant partial mediator.

ette analysis on these eight-feature representations to determine the optimal number of clusters255

to use within a bilateral mPFC ROI mask (restricting the number of clusters k to be less than the256

number of input features). The analysis revealed that k=2 yielded the highest average silhouette257

coefficient (s = 0.38). With this k=2 solution, we found that the two clusters separated along the258

anterior-posterior axis in both hemispheres (Fig 5A). We then re-ran our previous analyses (e.g.,259

encoding story score, encoding schema score, etc.) using these clusters as ROIs to identify (post-260

hoc) how the properties of these regions differed. We found that both clusters exhibited story and261

schema effects at encoding, but the contributions of these effects to subsequent memory differed262

across clusters: The encoding schema effect predicted subsequent memory in the anterior cluster263

but not the posterior cluster; by contrast, the relationship between the encoding story effect and264

subsequent memory was much larger in the posterior cluster than the anterior cluster. This flip265

in subsequent memory contributions between the anterior and posterior mPFC regions is consis-266

tent with a gradient of story representation to schema representation within mPFC, with schema267

representations in anterior (vs. posterior) mPFC being most critical for behavior.268

mPFC cluster mediation269

Having shown that encoding schema scores in anterior mPFC predict subsequent behavioral recall270

performance, we sought to relate this effect to the neural reinstatement effects discussed earlier.271

One hypothesis is that schema information in anterior mPFC at encoding boosts behavioral recall272

by promoting the (subsequent) neural reinstatement of story-specific information in regions like273

PMC. To test this hypothesis, we looked at whether the relationship between encoding schema274

scores in the anterior mPFC cluster and behavioral recall was mediated by PMC story information275

at recall (Fig 5B). Indeed, we found that PMC story information acted as a partial mediator between276

mPFC_c0 schema information at encoding and later memory (indirect effect A*B = 0.029, 95% bias-277

corrected bootstrap CI [0.006, 0.057]).278
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Discussion279

In this study, we investigated how our schematic knowledge about the sequential nature of com-280

mon real-life experiences shapes memory for specific narratives during two distinct phases: when281

we initially encode a new experience, and whenwe search ourmemory to retrieve it. We examined282

regions in the brain that exhibited schematic patterns at encoding and retrieval andmeasured the283

degree to which schematic information in both of these stages predicted subsequent memory for284

story details. In our prior work using this airport / restaurant paradigm, we had identified a large285

region of mPFC that represents schema information at encoding. Here, we found that an (anterior)286

subset of this region had the property that the level of schema representation during encoding pre-287

dicted subsequent memory for the story (measured using free recall). We also found that, while288

mPFC played an important role in schema representation during encoding of the stories presented289

here, it did not reliably represent schema information during recall of these stories, and the degree290

of schema representation in mPFC during recall did not reliably predict behavior. Consistent with291

ongoing research on functional differences along the long axis of the hippocampus (for a review292

see Poppenk et al., 2013), we found a major difference in how schema representations in anterior293

and posterior hippocampus contributed to subsequent memory at encoding. Anterior hippocam-294

pus showed a high level of schema representation at encoding and a nonsignificant positive rela-295

tionship between schema representation at encoding and subsequent memory; in contrast, the296

level of schema representation in posterior hippocampus at encoding was significantly negatively297

correlated with subsequent memory for the stories. Furthermore, neither hippocampal region298

showed significant relationships between schema representation and behavior at recall. More299

generally, the brain regions where schema representation during encoding predicted behavioral300

memory performance (visual cortex, left posterior temporal sulcus, prostriata, entorhinal cortex,301

left subcentral gyrus, postcentral sulcus, right lateral SFG, and anterior mPFC) were surprisingly302

distinct from the brain regions where schema representation during recall predicted behavioral303

memory performance (bilateral visual regions that were generally more medial/anterior than the304

regions identified at encoding, posterior superior temporal sulcus, left fusiform gyrus, right SPL,305

right AG, PHC, medial SFG, and middle frontal gyrus). As a whole, these results provide evidence306

that event schemas support memory for the details of naturalistic narrative stimuli, and that the307

brain networks that provide this support are different when we are integrating situational informa-308

tion during perception and when we search for memories during retrieval.309

Stimuli and design310

The schema literature in fMRI has been mostly split between studies that investigate the role of311

schemas at encoding and those that investigate their role in retrieval (but see Bonasia et al., 2018;312

Sommer, 2016; van der Linden et al., 2017; Raykov et al., 2021; Reagh et al., 2021). Of the studies313

focusing on the encoding phase, schemas have been operationalized by contrasting conditions314

in which participants have relevant prior knowledge vs. when they do not have this knowledge315

(Maguire et al., 1999; van Kesteren et al., 2010a, 2014; Raykov et al., 2018, 2020; Keidel et al.,316

2018; Liu et al., 2017, 2018; Sommer, 2016) or by using stimuli that are consistent vs. inconsistent317

with an activated schema (van Kesteren et al., 2013, 2020; Bonasia et al., 2018; van der Linden318

et al., 2017). Of the studies focusing on the retrieval phase, schemas have been studied through319

spatial paired associate tasks (PAs) (van Buuren et al., 2014; Sommer, 2016; Guo and Yang, 2020;320

Müller et al., 2020), learned rules or hierarchies (Wagner et al., 2015; Brod et al., 2015), simple as-321

sociations (van Kesteren et al., 2010b), static pictures (Webb et al., 2016; Webb and Dennis, 2019;322

van der Linden et al., 2017), and short video clips (Bonasia et al., 2018; Raykov et al., 2021; Reagh323

et al., 2021). In contrast to this past work, our design employed naturalistic, temporally-extended324

schema-consistent stimuli that were then paired with realistic unpaced verbal recall. Importantly,325

our design allowed us to neurally estimate the degree of story-specific and schematic representa-326

tion for each individual story, at both encoding and retrieval, across cortex and also in hippocam-327

pus; we were able to leverage this to explore how all of these factors related to behavioral memory328
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for story details, in a story-by-story fashion.329

Relationship between schematic representations during encoding and subsequent330

memory331

As was shown in a previous analysis of this dataset (Baldassano et al., 2018), schema representa-332

tions were present at encoding in many regions previously identified in other studies of schemas,333

including mPFC (van Kesteren et al., 2013, 2014, 2020; Raykov et al., 2020; Liu et al., 2017; Brod334

and Shing, 2018; Sommer, 2016; Bonasia et al., 2018; Reagh et al., 2021), PMC (Maguire et al., 1999;335

van Kesteren et al., 2013; Sommer, 2016; Bonasia et al., 2018), SFG (Bonasia et al., 2018; Brod and336

Shing, 2018), PHC (Keidel et al., 2018; van Kesteren et al., 2014; Liu et al., 2017; Bonasia et al., 2018;337

van der Linden et al., 2017), AG (Keidel et al., 2018; Bonasia et al., 2018; van der Linden et al., 2017),338

and the hippocampus (van Kesteren et al., 2013, 2014; Raykov et al., 2020; Liu et al., 2017). We also339

identified strong schema representation in prostriata (Mikellidou et al., 2017), a region anterior to340

V1 and in between RSC and parahippocampal cortex.341

Since having similar patterns across multiple stories is partially in conflict with having highly342

distinct story-specific patterns, it is not immediately obvious that maintaining schematic patterns343

that are shared across stories should be helpful for remembering story-specific information (for344

evidence of a tradeoff between recall of item-specific vs. shared information, see Tompary and345

Davachi, 2017). However, we foundmultiple regions inwhichmaintenance of this abstract schematic346

information was associated with improved memory for story details, including anterior mPFC, lat-347

eral frontal cortex, and portions of visual cortex (Fig 4A). Previous studies have shown that greater348

levels of mPFC activation at encoding are associated with better memory for schema-consistent349

stimuli (e.g., Raykov et al., 2021; van Kesteren et al., 2013, 2014; Brod and Shing, 2018); our results350

extend the literature by revealing a within-subjects (across-story) relationship between the activa-351

tion of anterior mPFC schema representations at encoding and memory for details of temporally-352

extended naturalistic stimuli. Surprisingly, we also found that schema representations in visual353

cortex contribute to memory. It is possible that certain visual features (e.g., visual features of secu-354

rity lines for airports, or tables for restaurants) are central to the mental representations of these355

airport and restaurant schemas; as such, increased attention to these visual features (for movies)356

and/or visualization of these features (for audio narratives) may reflect stronger schema represen-357

tation, leading to improved memory encoding.358

In the hippocampus, we found diverging effects in posterior and anterior subregions, with359

schematic patterns at encoding being nonsignificantly helpful for memory in anterior hippocam-360

pus but significantly harmful to memory in posterior hippocampus (the difference between these361

effects was also significant). Furthermore, while both posterior and anterior hippocampus exhib-362

ited significant story-specific representation at encoding, the correlation between encoding story363

scores and subsequent memory was significantly larger for posterior hippocampus. Taken to-364

gether, these results suggest that posterior hippocampus plays an especially important role in365

representing story-specific details, consistent with theories of gist vs. detail representations in the366

hippocampus (Guo and Yang, 2020; Audrain and McAndrews, 2020; Poppenk et al., 2013; Brunec367

et al., 2018; Schlichting et al., 2015; Collin et al., 2015; Sekeres et al., 2018; for data suggesting a368

reversed gradient see Tompary and Davachi, 2017; Dandolo and Schwabe, 2018).369

Relationship between schematic representations during retrieval andmemoryper-370

formance371

We identified a set of regions in which schematic codes were reactivated during retrieval, and the372

degree of reactivation was related to behavioral recall performance. These regions were largely373

non-overlappingwith those from the encoding-phase analysis, and included fusiformgyrus,middle374

frontal gyrus, and posterior parietal regions including right angular gyrus and SPL. Left fusiform375

gyrus and AG have been associated with visual imagery (Spagna et al., 2021; Ragni et al., 2020;376

Kuhl and Chun, 2014), and posterior parietal regions such as SPL have been implicated in top-down377
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attention during episodic memory retrieval (Hutchinson et al., 2014; Wagner et al., 2005; Cabeza378

et al., 2008) and general memory success (Brod et al., 2015;Webb et al., 2016). Because no visual379

cue (apart from the title of a story) was provided during recall, participants may need to rely on380

top-down generation of visual cues to orient to particular schema stages (e.g., generating amental381

image of what airport security usually looks like, to cue memory for the airport security part of an382

airport narrative).383

Many of the regions listed above (posterior parietal regions as well as lateral temporal cortex,384

superior frontal gyrus, middle frontal gyrus, and visual regions) have previously been implicated in385

schematic memory (Guo and Yang, 2020;Webb and Dennis, 2019; Brod et al., 2015; van der Linden386

et al., 2017), but they have also been reported to be involved in memory even when there is no387

schemamanipulation (van Buuren et al., 2014; van Kesteren et al., 2010b, 2020;Webb et al., 2016;388

Webb and Dennis, 2019; Brod et al., 2015). Since our study can separately measure both story-389

specific and schematic reactivation patterns during naturalistic recall, we were able to show that390

there was a memory boost from schema-related reactivation in these regions in addition to more391

general story reactivation effects.392

Given the strong involvement of mPFC during schematic encoding, it has been hypothesized393

thatmPFCmayplay a role at retrieval by providing schematic cues formemory search (vanKesteren394

et al., 2012). While some studies have found that schema-related activity in mPFC during retrieval395

benefits memory (Brod et al., 2015; van Kesteren et al., 2010b;Müller et al., 2020;Webb and Den-396

nis, 2019; Raykov et al., 2021), others have not (van Buuren et al., 2014; Webb et al., 2016; Guo397

and Yang, 2020; van der Linden et al., 2017; Reagh et al., 2021). In our study, we did not observe398

strongmPFC schema reinstatement, nor were able to relate it to a behavioral memory benefit. It is399

possible that schema representations in mPFC contribute to retrieval, but we failed to detect this400

contribution, e.g., because they only emerge at specific time points during recall, or they only arise401

after sleep consolidation (van der Linden et al., 2017; Brod et al., 2015; van Kesteren et al., 2010b),402

or they contribute through interactionswith other brain regions (Guo and Yang, 2020; van Kesteren403

et al., 2010b). Alternatively, schematic representations in mPFC during recall may be associated404

less with accurate recall of specific story details and more with verbal descriptions of schematic405

elements of the narrative. Because the rubric we made for scoring memory performance tracks406

recall of story-specific details, it is not ideal for measuring the extent to which a recall conforms to407

the general (restaurant or airport) schema. Future work exploring the relationship between neural408

measures and verbal recall of schematic features could further deepen our understanding of the409

correspondence between the brain and behavior.410

Conclusion411

In our study, we derived neural measures of story-specific and schematic representations in the412

brain during the perception and recall of narratives conforming to naturalistic event schemas. Our413

results extend the literature on the benefits of schemas for memory performance, relating the414

maintenance of schematic representations to a continuous behavioral measure of detailed mem-415

ory for realistic narrative stimuli. We found converging support for the idea that schema represen-416

tations in mPFC play an important role in memory encoding, but also striking differences between417

regions where schema representation at encoding was useful for memory, and regions where418

schema representation at retrieval was useful for memory. These findings can serve as a founda-419

tion for future work that seeks to further delineate the contributions of these encoding-specific420

and retrieval-specific schema networks.421

Methods and materials422

Participants423

Data were collected from a total of 31 participants between the ages of 18-34 (15 female, 16 male).424

The perception (movie-watching and story-listening) data from these participants have been pre-425
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viously reported (Baldassano et al., 2018). At the end of the study, participants were paid and426

debriefed about the purpose of the study. Every effort was made to recruit an equal number of427

female and male participants and to ensure that minorities were represented in proportion to the428

composition of the local community. The experimental protocol was approved by the Institutional429

Review Board (IRB) of Princeton University and all participants provided their written informed430

consent. Due to data loss during the recall phase, one participant (female) was excluded from the431

recall analyses.432

Stimuli433

The stimuli were designed to conform to two naturalistic schematic scripts that participants had434

encountered throughout their lifetimes. Each of the 16 stories described the schematic script of435

either eating at a restaurant or catching a flight at an airport (Bower et al., 1979). Each narrative436

was written or edited to follow a specific 4-stage event structure. For restaurant stories, the event437

structure consisted of 1) entering and being taken to a table, 2) sitting withmenus, 3) ordering food438

and waiting for its arrival, and 4) food arriving and being eaten; while airport narratives consisted439

of 1) entering the airport, 2) going through the security, 3) walking to and waiting at the gate, and440

4) getting onboard the plane and sitting in a seat.441

The videos were movie clips sampled from films (restaurant: Brazil, Derek, Mr. Bean, Pulp442

Fiction; airport: Due Date, Good luck Chuck, Knight and Day, Non-stop) that were edited for length443

and to conform to the 4-stage script. The audio stimuli were adapted from film scripts (restaurant:444

The Big Bang Theory, The Santa Clause, Shame, My Cousin Vinny; airport: Friends, How I met Your445

Mother, Seinfeld, Up in the Air) that were also edited for length and to match the schematic script.446

All audio narratives were read by the same professional actor. Each story, whether video or audio,447

was approximately 3 minutes long.448

Data acquisition and preprocessing449

Data were acquired with a voxel size of 2.0mm isotropic and a TR of 1.5 s (see Baldassano et al.,450

2018 for a full description of the sequence parameters). After fMRI data were aligned and prepro-451

cessed to correct for B0 distortion and fsaverage6 resampling, the resampled data were further452

preprocessed with a custom Python script that first removed nuisance regressors (the 6 degrees453

of freedom motion correction estimates, and low-order Legendre drift polynomials up to order [1454

+ duration/150] as in Analysis of Functional NeuroImages [AFNI]) (Cox, 1996), then z-scored each455

run, and then divided the runs into the portions corresponding to each stimulus (see Baldassano456

et al., 2018 for a more detailed description of our preprocessing pipeline).457

Experimental paradigm458

After listening to a short unrelated audio clip to verify that the volume level was set correctly, partic-459

ipants were presented with four encoding runs, using PsychoPy (RRID:SCR_006571; Peirce, 2007).460

Each run consisted of interleaved video and audio stories, with one story from each modality and461

schema in each run, and a randomized run order across subjects. Every story was preceded by a462

5 s black screen followed by a 5 s countdown video. The title of each story was displayed at the463

top of the screen throughout the story (the screen was otherwise black for the audio narratives).464

participants were informed that they would be asked to freely recall the stories after all 16 had465

been presented.466

During the recall phase, participants were asked to freely verbally recall (at their own pace) the467

details of each story when cued by the title of the story-to-remember. When participants finished468

recalling a particular story, they said “Done” to signal the experimenter for the next title. There469

were four recall runs in total. During each recall run, participants were cued to recall four sto-470

ries, with a 1 minute rest between each story recall. After recalling all 16 stories, while still being471

scanned, participants were asked to provide verbal descriptions of the typical experience of eating472

at a restaurant and the typical experience of going through an airport.473
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Searchlights and ROIs474

Searchlights475

Our searchlights were generated by randomly sampling a center vertex of the fsaverage6 surface476

mesh and identifying all vertices within 11 steps from it. Because the vertex spacing within the477

fsaverage6 mesh is 1.4 mm, the resulting radius is 15 mm. Searchlights were repeatedly sam-478

pled (discarding searchlights containing fewer than 100 vertices with valid timeseries) until every479

center vertex was included in at least 10 searchlights. This process yielded 1483 searchlights per480

hemisphere.481

A priori ROIs482

Following recentwork on the encoding of narrative event schemasusing the sameencoding dataset483

(Baldassano et al., 2018), as well as prior research on the representation of high level situation484

models (Zadbood et al., 2017; Chen et al., 2017; Baldassano et al., 2017; Kurby and Zacks, 2008;485

Radvansky and Zacks, 2017; Nguyen et al., 2019; Clewett et al., 2019), we focused our main ROI486

analyses onmedial prefrontal cortex (mPFC), posterior medial cortex (PMC), superior frontal gyrus487

(SFG), angular gyrus (AG), and parahippocampal cortex (PHC) because of their consistent presence488

in naturalistic paradigms and their role in maintaining schema representations during encoding.489

The regions were extracted from an established 17-network atlas on the fsaverage6 surface (Yeo490

et al., 2011) that formed part of the larger default mode network. Our full hippocampus ROI was491

extracted from a freesurfer subcortical parcellation, which was then further split between an ante-492

rior at y > -20 and posterior portion at y <= -20 in MNI space (Guo and Yang, 2020; Poppenk et al.,493

2013).494

Measuring story and schema strength in verbal and neural data495

Encoding similarity matrix496

For each story, we created four regressors to model the neural response to each of the four497

schematic events (i.e., the four stages of the script), with an additional nuisance regressor tomodel498

the initial countdown. The four regressors (and nuisance regressor) in our design matrix were499

placed temporally by using hand-labeled timestamps that marked event-transitions in the narra-500

tives. These were convolved with an HRF from AFNI (Cox, 1996) and then z-scored. We extracted501

the characteristic spatial pattern across vertices for each schematic event within a story by fitting502

a GLM (within each participant) to the timeseries of each vertex using these regressors. Next, to503

quantify the degree to which stories evoked similar neural patterns, we used intersubject spatial504

pattern similarity (e.g., Raykov et al., 2020; Baldassano et al., 2018; Chen et al., 2017) – specifi-505

cally, the event-specific patterns for a given story / participant were always compared to patterns506

that were derived from the N-1 other participants (by averaging the timecourses for the N-1 other507

participants for a given story, and then fitting a GLM to that averaged timecourse to identify the508

four event-specific patterns for that story). To compute the similarity for a given pair of stories509

(call them A and B) , the pattern vectors for each of story A’s four events were correlated with the510

pattern vectors for each of story B’s four events (i.e., the event 1 pattern for story A was correlated511

with the event 1 pattern for story B from the N-1 other participants; the event 2 pattern for story512

A was correlated with the event 2 pattern for story B from the N-1 other participants, and so on).513

These four correlation values for a given pair of stories (event 1 to event 1, event 2 to event 2, etc.)514

were averaged into a single value. For each participant, this sequence of steps was used to com-515

pare that participant’s representation of each story to the N-1 other participants’ representation516

of each story. The net result of this process was a 16x16 correlation (similarity) matrix for every517

participant, containing the (intersubject) neural similarity of each story to every other story (see518

Fig 1C).519
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Reinstatement similarity matrix520

First, we created a template for each of the four events in each story, by using a GLM to extract the521

multivoxel BOLD pattern for that event within each participant, and then averaging across partici-522

pants to get a single spatial pattern for that event (Fig 1D). We then sought to measure the extent523

to which these story-specific patterns were reinstated during the free recall period with the Hidden524

Markov Model (HMM) approach used in Baldassano et al. (2017, 2018). The model makes the as-525

sumption that, when recalling a story, the event pattern templates from encoding are replayed in526

the same ordered sequence. The variance parameter for the model was calculated per participant527

bymeasuring the variance of that story’s mean event patterns at perception. Given a template pat-528

tern for a story (i.e. its 4-stage encoding pattern), and the timeseries for the recall of that story, the529

model computes a probability that each time point of the recall belongs to each of the 4 template530

events. We then computed a weighted average spatial pattern for each event during the recall,531

using the probability matrix as the weights. To determine the strength of reinstatement between532

the template story and the recalled story, each of the four encoding event template patterns was533

correlated with all of the four recall event patterns, the strength of reinstatement was measured534

as the difference between the correlations for corresponding (e.g. encoding template event 1 and535

recall event 1) and non-corresponding events (e.g. encoding template event 1 and recall event 2).536

This differencemeasure per eventwas averaged andwas repeated for all combinations of template537

story and recall story, yielding a 16x16 encoding-recall similarity matrix per participant (see Fig 1D).538

Importantly, while our HMM method is biased to recover patterns that match the encoding tem-539

plates, this bias applies equally regardless of which stories are being compared; our reinstatement540

story and schema measures control for this bias by looking at the relative degree of reinstatement541

across different comparisons (e.g., comparing reinstatement of stories from the same schema vs.542

stories from the other schema).543

Story and schema scores544

Because we generated both an encoding and reinstatement similarity matrix for every participant,545

we could then perform contrasts for each stimulus for each participant (during encoding or recall)546

to measure the extent to which neural representations contain story-specific or schematic infor-547

mation.548

Story score (Fig 1C, 1D): To compute the story score for a particular story, we contrasted that549

story’s similarity to itself (a square on the diagonal of the similarity matrix) with the average of that550

story’s similarity to other stories from the same schema andmodality (themodality restriction was551

done to avoid effects driven by overall modality differences unrelated to this particular story). We552

determined statistical significance for the difference in similarity using a non-parametric permu-553

tation test in which we randomly permuted the stories within a schema 1000 times to generate a554

null distribution of differences. A p value was computed as the proportion of times a difference in555

the null distribution was greater than or equal to the difference of the correctly labeled data.556

Schema score (Fig 1C, 1D): To compute the schema score for a particular story, we contrasted557

the average of that story’s similarity to other stories from the same schema with the average of558

that story’s similarity to other stories from the other schema (using only stories from the same559

modality). Statistical significance was determined in a non-parametric permutation test in which560

schema labels of stories were randomly permuted 1000 times.561

To generate brainmaps of these scores, story and schema information were extracted from the562

encoding and reinstatement similarity matrices computed at each searchlight (Fig 1). To convert563

searchlights back to the cortical surface, the score for each vertex was computed as the average564

scores of all searchlights that included that vertex. Similarly, we averaged the null distributions for565

all searchlights that included a vertex to get a single null distribution per vertex. P-values were ob-566

tained per vertex through a two-sided nonparametric permutation test that looked for the propor-567

tion of times an absolute value in the null distribution (created by shuffling story labels separately568

for each participant) was greater than the absolute value of the original averaged story or schema569
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score. We then converted these p-values to q-values using the false discovery rate correction from570

AFNI (Cox, 1996).571

Behavior572

Verbal recall analysis (rubrics; Fig 1E): Hand-scored rubrics were used to provide a quantita-573

tive behavioral measure of memory recall performance for details within a story (available here).574

Rubrics for videos included points for recalling unchanging (“static”) details (e.g. character appear-575

ance, set design) and “dynamic” details (e.g., combined dialogue and visual descriptions). For audio576

stories, only “dynamic” details were tracked (given the lack of visual information). Transcripts for577

audio stories were split into sentences and points were awarded if a detail from at least a fraction578

of a sentence was recalled. Participant audio was recorded during free recalls and was manually579

timestamped, transcribed and scored for memory performance using the rubrics. Memory per-580

formance was measured by the number of details remembered (sum of points) and normalized581

by total possible details for a given story (as measured by max possible rubric score for a story).582

Two independent coders scored every participant’s memory performance (intercoder reliability,583

pearson r = .95) and final scores per story were averaged across both independent coders.584

Predicting behavioral performance from neural scores585

We next wanted to identify whether the story and schema scores at encoding or recall predicted586

behavioral memory performance. In other words, how does the neural representation of story587

and schema information at either encoding or recall predict later memory?588

To answer this question, we conducted four separate leave-one-participant-out linear regres-589

sion analyses for each ROI or searchlight. Each of the four regression analyses used a particu-590

lar neural score (either encoding story, encoding schema, reinstatement story or reinstatement591

schema) to predict behavioral recall performance, on a story-by-story basis. The regression mod-592

els were trained on neural scores and behavioral scores from all but one participant; we then used593

the trained model to predict the left-out participant’s 16 behavioral recall scores (one per story;594

Fig 1F) based on that participant’s neural scores. Each of the four regressions was run with each595

of the 30 subjects as a test subject, providing a 30x16 matrix of behavioral predictions on held-out596

subjects. With these predictions, model performance was measured by variance explained (R2)597

compared to a baseline model of simply predicting the average rubric score of the N-1 group. Sta-598

tistical significance was determined through nonparametric permutation testing, in which a null599

distribution of 1,000 values was made by shuffling the story scores within each subject (thereby600

keeping the subjects intact) before running the leave-one-out regression. To visualize searchlight601

results on the cortical surface, we averagedR2 scores across searchlights in the same way that was602

described above for the story and schema scores (i.e., each vertex was assigned the average R2603

across all of the searchlights that included that vertex).604

With simple linear regression, predictions of rubric scores below zero were possible, despite605

zero being the lowest possible rubric score. To enforce realistic predictions of rubric scores of606

greater or equal to zero, we also ran the same regression procedure with a logistic output layer;607

the results of this analysis were highly similar to the results that we obtained when we used linear608

regression. Consequently, for the sake of simplicity, we only describe the results for simple linear609

regression here.610

ROI to ROI correlations611

Because story information wasmost strongly reinstated in PMC (Fig 2), and this reinstatement was612

highly predictive of behavioral rubric scores (Fig 3), we examined whether there were neural sig-613

nals during encoding that were predictive of later PMC story reinstatement. To do this, we ran a614

linear regression with PMC’s reinstatement story score as the dependent variable and each search-615

light’s encoding schema score as the independent measure. To test for significance, we generated616

a null distribution in which story labels for the dependent variable were shuffled within subjects.617
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In this nonparametric permutation 2-sided test, p-values were computed by calculating the pro-618

portion of absolute values above the test-value. Searchlights were converted back to vertex-space619

before converting the p-values to q-values with AFNI’s FDR-correction. To visualize the results on620

a brainmap, vertices were thresholded at q<0.05.621

Schema representation and subsequent behavior622

To identify regions where schema information was represented and the degree of that schema623

representation influenced memory, we intersected positive schema effects (thresholded by FDR <624

0.001; Fig 3B) with regions that were positively correlated with later memory (thresholded by FDR625

< 0.05; Fig 3D, right column). We did this for encoding (Fig 4A) and recall (Fig 4B) separately.626

K-means clustering and mediation analysis627

Although the full mPFC ROI showed strong schema representation during perception (Fig 2), the628

behavioral prediction searchlights revealed that schema information only predicted behavior in629

the most anterior portion of mPFC (Fig 3B). To explore the differential functional roles of mPFC630

subregions, we ran a post-hoc K-means clustering analysis to segment ourmPFC ROI into 2 clusters631

with distinct functional profiles (Fig 5). Using the results of 8 different searchlights (Fig 2 and Fig 3)632

as features, we generated clusters across multiple k’s bilaterally on searchlight vertices using our a633

priorimPFC ROI as a mask. We first ran a silhouette analysis to determine the optimal k (restricting634

k to be less than the number of input features); then, for each resulting cluster, we calculated new635

similarity matrices, extracted story and schema scores, and ran our behavioral prediction analysis636

(Fig 5).637

We also ran an additional mediation analysis to identify the extent to which PMC andmPFC sub-638

regions interacted to support recall (Fig 5B). Our goal was to determine whether the behavioral im-639

pact of schematic representations in mPFC at encoding was mediated through the reinstatement640

of story information in PMC. To do this, we ran a traditional single-mediator model in which the641

causal, mediator and outcome variables were mPFC subregion schema information at encoding,642

PMC story information at recall, and rubric scores, respectively (Baron and Kenny, 1986). The total643

effect of the causal variable mPFC schema at encoding on the outcome rubric scores (path c) was644

calculated by running a linear regression with each regressor standardized. The significance of645

the effect was computed by generating a null distribution from shuffling the labels of the outcome646

variable, generating a corresponding z-value for the original effect, and converting to a p-value647

from the survival function of the normal distribution. This same procedure was used to test for648

the significance of each individual component in the indirect effect (paths a and b) as well as the649

direct effect (path c’). To test for statistical significance of the indirect effect (i.e. mediated effect),650

we performed a bias-corrected bootstrap test (Efron and Tibshirani, 1994). To determine the speci-651

ficity of this effect, we also ran a variant of this analysis where swapped the roles of the two ROIs,652

using the PMC encoding schema score as the causal variable and mPFC subregion reinstatement653

story score as the mediator. We found no significant effects in this analysis.654
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Figure 3–Figure supplement 1. Predicting PMC reinstatement story scores with encoding
schema scores across cortex. (A.) In a searchlight analysis, we used encoding schema scores
across the brain to predict reinstatement story scores in PMC. (B.) Dark blue to dark red gradients
represent negative to positive strength of associations between encoding schema scores (for the
colored region) and PMC reinstatement story scores. Surface maps were statistically thresholded
by comparing model performance on held-out data to a null distribution and then FDR correcting
for q < 0.05.
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