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Abstract.
Background: Alzheimer’s disease (AD) is associated with EEG changes across the sleep-wake cycle. As the brain is a
non-linear system, non-linear EEG features across behavioral states may provide an informative physiologic biomarker of
AD. Multiscale fluctuation dispersion entropy (MFDE) provides a sensitive non-linear measure of EEG information content
across a range of biologically relevant time-scales.
Objective: To evaluate MFDE in awake and sleep EEGs as a potential biomarker for AD.
Methods: We analyzed overnight scalp EEGs from 35 cognitively normal healthy controls, 23 participants with mild cognitive
impairment (MCI), and 19 participants with mild dementia due to AD. We examined measures of entropy in wake and sleep
states, including a slow-to-fast-activity ratio of entropy (SFAR-entropy). We compared SFAR-entropy to linear EEG measures
including a slow-to-fast-activity ratio of power spectral density (SFAR-PSD) and relative alpha power, as well as to cognitive
function.
Results: SFAR-entropy differentiated dementia from MCI and controls. This effect was greatest in REM sleep, a state
associated with high cholinergic activity. Differentiation was evident in the whole brain EEG and was most prominent in
temporal and occipital regions. Five minutes of REM sleep was sufficient to distinguish dementia from MCI and controls.
Higher SFAR-entropy during REM sleep was associated with worse performance on the Montreal Cognitive Assessment.
Classifiers based on REM sleep SFAR-entropy distinguished dementia from MCI and controls with high accuracy, and
outperformed classifiers based on SFAR-PSD and relative alpha power.
Conclusion: SFAR-entropy measured in REM sleep robustly discriminates dementia in AD from MCI and healthy controls.
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INTRODUCTION

A growing number of biomarkers have been
developed to assist in the diagnosis and staging
of Alzheimer’s disease (AD), the most common
neurodegenerative disease and dementia [1–3]. Amy-
loid and tau assessments via positron emission
tomography (PET) imaging, cerebrospinal fluid
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(CSF) analysis, and recently developed blood-based
measurements complement multiple measures of
neurodegeneration, including structural magnetic
resonance imaging (MRI) measures of atrophy, CSF
and blood analytes, and functional measures such as
fluorodeoxyglucose PET, functional MRI, and elec-
troencephalography (EEG) [4–7]. Together, these
biomarkers provide a broad characterization of the
disease process.

From its earliest stages, AD is characterized by
synaptic dysfunction and circuit failure [6, 8]. Scalp
EEG offers high temporal resolution measurements
of the brain’s electrical activity and is both non-
invasive and cost-effective [7, 9, 10]. As such, scalp
EEG may be a promising tool to assess the neuro-
physiologic changes that arise in AD.

Analysis of brief periods of awake resting-state
EEG (rsEEG) has been explored extensively for
the development of EEG biomarkers for AD and
mild cognitive impairment (MCI) [11, 12]. Power
spectrum and functional connectivity-based methods
have been widely employed to characterize rsEEGs
in MCI and AD [7, 11, 13]. Most such analyses
have been based on relative power spectral density
(rPSD) of the rsEEG and have demonstrated increases
in spectral power at lower frequency bands (theta
and delta) in individuals with AD, and to a lesser
extent, those with MCI, compared to age-matched
healthy controls [11, 12, 14]. Yet, despite a large
number of studies in this area, the diagnostic accu-
racy of rsEEG in AD remains controversial, and
there is currently insufficient evidence to recom-
mend rsEEG as part of the diagnostic workup for AD
[11, 15, 16].

Although the earliest stages of AD are associated
with sleep disturbances, and a growing literature has
demonstrated important changes in sleep neurophys-
iology over the course of AD, including changes in
sleep macro-architecture (increased sleep fragmenta-
tion and reduced time in deeper stages of sleep) [17,
18], analysis of sleep EEG in AD has received rela-
tively little attention to date. Even so, in non-rapid eye
movement (NREM) sleep, a number of reports have
described AD-associated changes in sleep spindles,
K-complexes, slow wave activity, and spindle-slow
wave coupling, some of which correlate with the bur-
den of amyloid and/or tau pathology, or with changes
in cognitive function [19–25].

As rapid eye movement (REM) sleep engages
basal forebrain cholinergic neurons, which degener-
ate early and prominently in AD [26–28] and which
are differentially active across sleep and waking states

[29–31], there is reason to anticipate that changes
in REM sleep would also be a feature of early AD.
Indeed, a limited series of studies 30 years ago
evaluating EEG spectral changes in AD found that
spectral changes during REM sleep more accurately
distinguished AD from healthy controls than spectral
changes during the awake state [32]. In particular,
the ratio of power in the slow frequencies (delta and
theta) over that in the fast frequencies (alpha and
beta), referred to here as the slow-to-fast activity
ratio of the power spectral density (SFAR-PSD), was
found to be significantly greater during REM sleep
in individuals with mild to moderate AD demen-
tia, compared to healthy controls [32]. Whether
this intriguing finding is in fact robust has been
unclear.

Cognition and higher-order perception, which
deteriorate in MCI and AD, originate from the col-
lective activity of a large number of neurons within
cortical circuits and across the brain’s large-scale sys-
tems [7, 33]. Modeling large-scale brain activity with
nonlinear dynamical approaches based on informa-
tion theory, such as entropy, allows the integration
of experimental data from multiple modalities into
a collective framework. It has been demonstrated
that collective, nonlinear dynamics are fundamental
to adaptive cortical activity and linked to a num-
ber of brain disorders [7, 34, 35]. To this end,
entropy approaches have been used to detect nonlin-
ear dynamics of the EEG. However, existing entropy
approaches have been used to quantify the irregu-
larity of signals at one temporal scale and may fail
to account for the multiple time-scales inherent in
electrophysiological recordings [36, 37]. To detect
EEG dynamics across a range of biologically rel-
evant time-scales that span from delta to gamma
oscillations, multiscale non-linear methods such as
multiscale fluctuation dispersion entropy (MFDE) are
of particular interest, as they are sensitive to fluctua-
tion changes in EEG time series over these time scales
[37].

To date, the examination of MFDE in AD has pri-
marily been performed on awake rsEEG [38]. We
hypothesized that its application across sleep states
would be of particular value in discriminating AD,
where impairments of the sleep EEG and cholinergic
cell loss are prominent. Thus, we evaluated MFDE
of sleep EEG in participants with mild dementia and
MCI due to probable AD, as well as healthy cog-
nitively normal older adults, and compared MFDE
to rPSD and relative alpha power across sleep
states.
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MATERIALS AND METHODS

Standard protocol approvals, registrations, and
patient consents

All study procedures were performed under a pro-
tocol approved by the Institutional Review Board at
our Center. Written informed consent was obtained
from all prospectively recruited research participants.

Study population

Ambulatory EEG recordings analyzed in this
study were acquired both prospectively and retro-
spectively. Some EEGs were collected prospectively
from research participants, and others were obtained
retrospectively from patients who underwent ambu-
latory EEG for clinical purposes, as previously
described [39]. A subset of EEGs analyzed in
this study came from participants from the prior
study who met our inclusion and exclusion crite-
ria below and whose EEGs had undergone manual
sleep scoring as part of another study [40]. To
improve diagnostic purity of our sample in this study,
we excluded all individuals who had a history of
epilepsy.

Inclusion criteria for this study were: 1) Age
60–85 years at time of EEG; and 2) Clinical clas-
sification into one of 3 groups: cognitively normal
healthy controls (HC); MCI due to probable AD
(MCI), determined according to the National Insti-
tute of Aging-Alzheimer’s Association criteria [41];
and mild dementia due to probable AD (DEM),
determined according to the National Institute of
Aging-Alzheimer’s Association criteria [42]. All HC
had neurocognitive test scores within the normal
range and Clinical Dementia Rating global score
of 0. MCI and DEM had Clinical Dementia Rating
global scores of 0.5 and 1, respectively, at the time of
EEG. Exclusion criteria for this study were: 1) his-
tory of epilepsy, stroke, traumatic brain injury with
loss of consciousness, meningitis/encephalitis, brain
tumor, or brain surgery; and 2) current use of benzo-
diazepines, sleep aids, or bupropion. No participants
had clinical or biomarker features to support a diag-
nosis of MCI with Lewy bodies or dementia with
Lewy bodies (parkinsonism, REM sleep behavioral
disorder, hallucinations or indicative biomarkers),
an alternative parkinsonian dementia, frontotemporal
dementia, or vascular dementia [43–45]. Two cog-
nitive neurologists (SG, AL) reviewed all MCI and
DEM cases to adjudicate diagnoses based on the

above criteria; their consensus diagnosis was used
for group classifications.

Cognitive testing

Montreal Cognitive Assessment (MoCA) and
Mini-Mental State Exam (MMSE) scores were
obtained either from clinical workup or as part
of research study procedures. We analyzed scores
that were performed within 1 year of the EEG
(mean ± std: 101 ± 98 days). If participants had mul-
tiple test scores within 1 year of the EEG, we selected
the one closest in time to the EEG study. MMSE
scores were converted to the equivalent MoCA score,
based on the conversion table from [46].

EEG acquisition, sleep scoring, and
pre-processing

Ambulatory EEG enables long-term monitoring
of brain activity in realistic, dynamic environments.
This technique, compared with routine EEG and
long-term monitoring in a hospital, benefits from low
cost, convenience, and the ability to capture circadian
patterns. Acquisition of ambulatory EEG recordings
in the study was as described previously [39]. In
short, scalp EEG electrodes were placed according
to the International 10–20 system with additional
anterior temporal (T1, T2) electrodes. EEGs were
recorded using XLTEK TREX hardware (Natus Med-
ical Inc, Pleasanton, CA) with sampling rate of
200 Hz. Ambulatory EEG recording data used in this
study spanned from 10 to 48 h. All ambulatory EEGs
were visually reviewed in entirety by two board-
certified clinical neurophysiologists (ADL, RAS) to
ensure quality of the recordings. EEGs were manu-
ally sleep scored by a single sleep technician (blinded
to diagnosis), using 5 sleep stages (wake, NREM1,
NREM2, NREM3, and REM), according to Ameri-
can Academy of Sleep Medicine (AASM) criteria as
described previously [40].

For pre-processing, EEGs were digitally band-pass
filtered in both forward and reverse directions to avoid
net phase shift, with a Hamming window FIR fil-
ter of order 200 and cut-off frequencies at 1 Hz and
40 Hz. EEG data were analyzed with channels in an
anterior-posterior longitudinal bipolar montage (Fp1-
F7, F7-T3, T3-T5, T5-O1, Fp1-F3, F3-C3, C3-P3,
P3-O1, Fz-Cz, Cz-Pz, Fp2-F4, F4-C4, C4-P4, P4-
O2, Fp2-F8, F8-T4, T4-T6, T6-O2). We analyzed
the data across the whole brain (all channels) as well
as in five brain regions, including frontal (Fp1-F7,
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Fp1-F3, F3-C3, Fz-Cz, Fp2-F8, Fp2-F4, F4-C4), tem-
poral (F7-T3, T3-T5, T5-O1, F8-T4, T4-T6, T6-O2),
central (F3-C3, F4-C4, C3-P3, C4-P4, Fz-Cz, Cz-Pz),
parietal (C3-P3, C4-P4, P3-O1, P4-O2, Cz-Pz), and
occipital (T5-O1, P3-O1, T6-O2, P4-O2).

Power spectral density analysis

Power spectra were computed from band-passed
EEG data based on discrete Fourier transform and
normalized to the total power in the spectrum (relative
PSD). Each EEG was divided into non-overlapping
30-s epochs, aligned with the manual sleep scoring.
Each 30-s epoch was further divided into non-
overlapping 3-s windows, and a PSD was calculated
for each 3-s window, for each channel. A sleep-stage
specific PSD was then determined for each patient, by
calculating the median PSDs across all 3-s windows
in a given sleep stage (awake, N1, N2, REM), for each
channel. Median values were used to minimize the
potential effects of outliers related to noise or artifact
in the EEG recordings. SFAR-PSD was also calcu-
lated as: (delta + theta) / (alpha + beta), using spectral
band power in slow and fast frequency ranges, with
delta: 0.5–4 Hz, theta: 4–8 Hz, alpha: 8–12 Hz, and
beta: 12–32 Hz [47]. Relative alpha power was cal-
culated as the power in the alpha band divided by the
total power in the frequency band 1–40 Hz.

Multiscale fluctuation dispersion entropy

MFDE is based on fluctuation dispersion entropy
(FDispEn) and provides insight into the complex-
ity of fluctuations over a range of time scales [37,
38]. DispEn and its fluctuation form (FDispEn) are
recently proposed entropy metrics based on Shannon
entropy and fluctuation dispersion patterns [48, 49].
Dispersion entropy-based methods detect change in
amplitude, frequency, bandwidth, noise power, and
periodicity of time series [48, 49]. These entropy
approaches have been applied in a variety of set-
tings in biomedical signal analysis, including rsEEG
and sleep EEG [37, 50, 51], magnetoencephalogra-
phy [37], cardiac activity [52, 53], and heart sounds
[54], among others. As FDispEn is faster than DispEn
and needs a lower number of samples for a reliable
estimation of entropy [49], we elected to use MFDE
in this study. Formally, MFDE is computed as follows
[38].

Assume a univariate discrete time series of length
L: u = {u1, u2, . . . , uL}. First, the original signal u
is divided into non-overlapping segments of length τ,

called temporal scale factor. Next, the average of each
segment is calculated to derive the coarse-grained
time series as follows:

x
(τ)
j = 1

τ

jτ∑
b=(j−1)τ+1

ub 1 ≤ j ≤ L

τ
= N. (1)

Finally, the FDispEn value is calculated for each
coarse-grained signal.

The FDispEn of the univariate signal of length N:
x = {x1, x2, . . . , xN} is defined as follows:

1) xj (j = 1, 2, . . . , N) are first mapped to c

classes with integer indices from 1 to c. For this
purpose, the normal cumulative distribution func-
tion (NCDF) is first used to overcome the problem
of assigning most of xi to only a few classes when
maximum or minimum values are considerably larger
or smaller than the median/mean value of the time
series. The NCDF maps x into y = {y1, y2, . . . , yN}
between 0 and 1 as follows:

yj = 1

σ
√

2π

xj

∫
−∞

e
−(t−μ)2

2σ2 dt (2)

where μ and σ are respectively the mean and SD
of signal x. Afterwards, we use a linear mapping to
assign each yi to an integer from 1 to c. To this end, for
each member of the mapped time series, we use zc

j =
round

(
c · yj + 0.5

)
, where zc

j shows the jth member
of the classified signal and rounding involves either
increasing or decreasing a number to the next digit.

2) zm,c
i are made with embedding

dimension m and time delay d accord-

ing to zm,c
i =

{
zc
i , z

c
i+d, . . . , z

c
i+(m−1)d

}
,

i = 1, 2, . . . , N − (m − 1) d. Each vector zm,c
i

is mapped to a dispersion pattern πv0v1...vm−1 , where
zc
i = v0, zc

i+d = v1, . . . , z
c
i+(m−1)d = vm−1. The

number of possible fluctuation-based dispersion
patterns that can be assigned to each vector zm,c

i is
equal to (2c − 1)m−1.

3) For each (2c − 1)m−1 potential dispersion pat-
terns πv0v1...vm−1 , relative frequency is calculated as
follows:

p
(
πv0...vm−1

) =
#

{
i
∣∣i ≤ N − (m − 1) d, zm,c

i has type πv0...vm−1

}

N − (m − 1) d

(3)

where # means cardinality. In fact, p
(
πv0v1...vm−1

)
denotes the number of dispersion patterns of
πv0v1...vm−1 that is assigned to zm,c

i , divided by the
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total number of embedded vectors with embedding
dimension m.

4) Finally, according to the definition of Shannon
entropy, the FDispEn is defined as follows:

FDispEn (x, m, c, d) =

−
(2c−1)m−1∑

π=1

p
(
πv0...vm−1

) · ln
(
p

(
πv0...vm−1

))

(4)

Multiscale entropy techniques at scale factor τ

can be considered as a low-pass filter with cut-off
frequency fs

2τ
[55]. Based on this fact, MFDE at

τ = 5 and τ = 20 correspond to the frequency band
1–20 Hz and 1–5 Hz, respectively. In this study, we
investigate the effect of DEM or MCI on entropy in
lower relative to higher frequency components.

For MFDE (and all other entropy measures
described below), each EEG was divided into non-
overlapping 30-s epochs, aligned with the manual
sleep scoring. Each 30-s epoch was further divided
into non-overlapping 3-s windows, and MFDE was
calculated in each 3-s window, for each channel.
A sleep-stage specific MFDE was then determined
for each patient, by calculating the median MFDE
value across all 3-s windows from a given sleep stage
(awake, N1, N2, and REM), for each channel. As
with PSD, median values were used to minimize the
potential effects of outliers related to noise or artifact
in the EEG recordings. The SFAR-entropy measure
was calculated as: (MFDE at scale 20) / (MFDE at
scale 5).

Code for calculating MFDE can be found at:
https://github.com/HamedAzami. Topoplots of
MFDE values were created in MATLAB using
code available at: https://www.mathworks.com/
matlabcentral/fileexchange/72729-topographic-eeg-
meg-plot. For each diagnostic group, coefficients of
variation (ratio of the standard deviation to the mean)
of SFAR-entropy and SFAR-PSD within each period
of REM sleep were calculated for each individual
patient and averaged.

Other entropy measures

Multiscale fuzzy entropy (MFE) is a conditional
entropy-based measure that calculates a modification
of sample entropy—fuzzy entropy—over multiple
time scales [56]. MFE, unlike multiscale sample
entropy, does not lead to undefined or unreliable val-
ues, especially for short signals [38, 56].

Multiscale dispersion entropy (MDE) is a distinct
nonlinear measure quantifying the dynamical vari-
ability of the fluctuations of signals over multiple time
scales [38]. Code for calculating MFE and MFDE
can be found at: https://doi.org/10.7488/ds/1477 and
https://doi.org/10.7488/ds/1982, respectively.

Classification models

We trained logistic regression classifiers to distin-
guish DEM from MCI; DEM from HC; and MCI from
HC, using either occipital SFAR-entropy (based on
MFDE), SFAR-PSD, or relative alpha power as the
input. Additional models that included demographic
features of age, sex, and level of education were also
explored. Logistic regression was implemented using
the Scikit-learn library [57] with default hyperpa-
rameters. We used a leave-one-participant-out cross
validation where, for each model and a dataset of size
n participants, we used n-1 participants to train the
model and tested the model using the 1 left-out partic-
ipant. This procedure was repeated n times, testing on
each participant once. We then determined the over-
all cross-validation performance of the model across
all n left-out participants. We evaluated the cross-
validated performance of each model using the area
under the Receiver Operating Characteristic curve
(AUCROC) and the area under the Precision-Recall
Curve (AUCPR). For each model, 95% confidence
intervals were obtained by bootstrapping, using 1000
random sub-samples, each 90% of the total sample
size, stratified by diagnostic group, with replace-
ment. The same features were used during training
and testing in each model, i.e., no feature elimina-
tion approaches were used. Statistical comparisons
of model performances were assessed using a non-
parametric p-value estimation based on the calculated
confidence intervals [58].

Statistical analysis

Group statistical comparisons were performed
using analysis of variance (ANOVA) with Tukey post
hoc pairwise comparisons. Relationships between
continuous measures were assessed with Spear-
man correlations. Group statistics are reported
as means ± standard deviations, unless otherwise
stated. Statistical analyses were conducted using
MATLAB version 2018a. ANOVA p-values were
Bonferroni corrected for multiple comparisons.

https://github.com/HamedAzami
https://www.mathworks.com/matlabcentral/fileexchange/72729-topographic-eeg-meg-plot
https://doi.org/10.7488/ds/1477
https://doi.org/10.7488/ds/1982
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RESULTS

Study population demographics

EEG data were analyzed from 35 HC, 23 MCI,
and 19 DEM participants. The demographics of our
study population are shown in Table 1. Additional
biomarker evidence indicating AD pathology (CSF,
Pittsburgh compound B PET, or autopsy) was avail-
able for 1 MCI and 4 DEM participants. There
were no significant differences between groups with
respect to age, gender, years of education, or the
relative distribution of sleep stages seen in each
group, as a percentage of total time in sleep. Acetyl-
cholinesterase inhibitor use was common in MCI and
DEM.

Whole brain MFDE across the sleep-wake cycle

We first calculated whole brain-averaged MFDE
across a range of entropy scale factors. We assessed
group differences in this measure across states of
wakefulness and sleep (NREM1, NREM2, and REM)
(Fig. 1A). NREM3 sleep was excluded, as most par-
ticipants (83% of HC, 75% of MCI, and 67% of
DEM), had no NREM3 sleep observed during their
EEG study. The MFDE curves for HC, MCI, and
DEM were qualitatively similar in the awake, NREM,
and REM states, with differences in MFDE between
groups seen at both low and high entropy scale fac-
tors. At low scale factors, the DEM group had lower
MFDE values compared to MCI and HC, while at
high scale factors, the DEM group had higher MFDE
values compared to MCI and HC.

Given that the group differences in MFDE at low
and high scale factors occurred in opposite direc-
tions, we calculated a slow-to-fast activity ratio of
the MFDE (SFAR-entropy), as the ratio of MFDE at
a scale factor of 20 (1–5 Hz band) to MFDE at a scale
factor of 5 (1–20 Hz band), to see if this would pro-
vide facile discrimination between groups (Fig. 1B).
The ANOVA p-values were corrected based on the
Bonferroni method for 4 comparisons.

In REM sleep, the whole-brain averaged SFAR-
entropy was significantly higher in DEM than in
HC, and also in DEM compared to MCI (corrected
ANOVA, p = 2e-4; post hoc comparison of DEM
versus HC, p = 2e-6; post hoc comparison of DEM
versus MCI, p = 0.007). In contrast, there was reduced
discrimination between groups using whole brain-
averaged SFAR-entropy in the awake, NREM1, and
NREM2 stages. No significant differences were seen

between any of the groups in the NREM2 stage. In
the awake state, there was a significant difference
between DEM versus HC, but not between DEM
versus MCI (corrected ANOVA, p = 0.038; post hoc
comparison of DEM versus HC, p = 0.0083; post hoc
comparison of DEM versus MCI, p > 0.05). Similarly,
in the NREM1 stage, there was a significant differ-
ence between DEM versus HC, but not between DEM
versus MCI (corrected ANOVA, p = 0.0032; post hoc
comparison of DEM versus HC, p = 5e-4; post hoc
comparison of DEM versus MCI, p > 0.05).

REM sleep is characterized by rapid phasic eye
movements, which can contaminate frontal and
temporal EEG channels with large amplitude eye
movement artifacts. To ensure that our results in
REM sleep were not simply related to eye move-
ment artifacts, we repeated the calculations above,
while excluding channels from the frontal and tem-
poral regions and found that the results for the
REM sleep analysis were unchanged (corrected
ANOVA, p = 8e-4; post hoc comparison of DEM ver-
sus HC, p = 1e-4; post hoc comparison of DEM versus
MCI, p = 0.016; Supplementary Figure 1). Together,
these results demonstrate that whole brain-averaged
MFDE is significantly different in individuals with
DEM compared to both MCI and HC, and that
these differences are most prominent in REM
sleep.

Brain regional differences in MFDE during REM
sleep

We next evaluated whether the differences in
SFAR-entropy during REM sleep in DEM were
enriched within specific brain regions. Figure 2A
shows topoplots of MFDE for each group, calcu-
lated at a scale of 5 (top row), a scale of 20 (middle
row), and at an MFDE ratio of scales 20 to 5 (SFAR-
entropy; bottom row). We also calculated the average
SFAR-entropy within specific brain regions, includ-
ing frontal, temporal, central, parietal, and occipital
(Fig. 2B). The ANOVA p-values were corrected
based on the Bonferroni method for 5 comparisons.

Significant differences between DEM and HC,
and between DEM and MCI, were seen for all
brain regions assessed (Fig. 2B). Group differences
in SFAR-entropy were greatest within the temporal
region (corrected ANOVA: p = 2e-5; post hoc com-
parison of DEM versus MCI, p = 0.002; post hoc
comparison of DEM versus HC, p = 2e-6). After
the temporal lobe, the lowest ANOVA p-value was
obtained in the occipital lobe (corrected ANOVA:
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Table 1
Study population demographics and sleep macro-architecture

HC MCI DEM ANOVA p

Participants (n) 35 23 19 –
Age, y (SD) 75.5 (6.9) 75 (6.9) 72.2 (6) NS
Female (# / %) 20 / 57% 15 / 65% 9 / 47% NS
Years of Education (SD) 16.9 (2.7) 16.2 (2.3) 15.3 (3.4) NS
Global CDR score (SD) 0 (0) 0.5 (0) 1 (0)
Cholinesterase inhibitor use (# / %) 0 / 0% 9 / 39% 13 / 68% p = 1e-8;

HC versus MCI, p = 0.0004;
HC versus DEM p = 1e-8;

MCI versus DEM, p = 0.028
MoCA score (SD) 28 (1.8) 23.3 (3) 13.9 (6.4) p = 2e-15;

HC versus MCI, p = 1e-04;
HC versus DEM p = 9e-10;
MCI versus DEM, p = 3e-9

Sleep Macro-Architecture
Total sleep, min (SD) 375 (88) 368 (105) 406 (99) NS
N1 sleep, min (SD) 57 (29) 46 (24) 51 (26) NS
N2 sleep, min (SD) 227 (72) 216 (73) 264 (92) NS
N3 sleep, min (SD) 1 (3) 8 (21) 6 (18) NS
REM sleep, min (SD) 89 (39) 98 (53) 85 (44) NS
% N1 sleep 15% (7%) 13% (8%) 13% (7%) NS
% N2 sleep 60% (10%) 59% (12%) 64% (13%) NS
% N3 sleep 0.2% (0.8%) 2% (6%) 1.4% (4.3%) NS
% REM sleep 24% (9%) 25% (10%) 21% (9%) NS

SD, standard deviation.

Fig. 1. Assessment of whole-brain averaged MFDE across the sleep-wake cycle in AD. A) Whole brain-averaged multiscale fluctuation
dispersion entropy (MFDE) measured from EEG across awake and sleep states in 35 HC (black), 23 MCI (blue), and 19 DEM (red)
participants. B) Slow-to-fast activity ratio for MFDE (SFAR-entropy) across awake and sleep states for HC, MCI, and DEM. ANOVA
p-values are shown for each boxplot (Bonferroni corrected). Statistically significant post-hoc comparisons with p-values<0.01, 0.001, and
0.0001 are shown with **, ***, and ****, respectively.

p = 3e-5; post hoc comparison of DEM versus MCI,
p = 0.002; post hoc comparison of DEM versus HC,
p = 6e-6). As such and given that the occipital lobe is
the region least affected by eye movement artifacts
in REM sleep, we carried out the remainder of our
analyses using SFAR-entropy in the occipital region
during REM sleep.

Group differences in MFDE are not related to
use of acetylcholine esterase inhibitors

To determine whether group differences in SFAR-
entropy were impacted by differential use of
acetylcholine esterase inhibitors, we repeated the
analyses in participants not using acetylcholine
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Fig. 2. Evaluation of regional REM sleep-associated MFDE changes in AD. A) Topoplots of averaged MFDE values during REM sleep at
scale 5 (top row) and scale 20 (middle row), and the ratio of MFDE at scale 20 to scale 5 (SFAR-entropy, bottom row) for HC, MCI, and
DEM. B) SFAR-entropy in the frontal (ANOVA, p = 1e-03), temporal (ANOVA, p = 2e-05), central (ANOVA, p = 2e-03) parietal (ANOVA,
p = 1e-03), and occipital (ANOVA, p = 3e-05) regions for HC, MCI, and DEM. ANOVA p-values are Bonferroni corrected. Group differences
with p-values<0.05, 0.01, 0.001, 0.0001, and 0.00001 are shown with *, **, ***, ****, and *****, respectively.
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esterase inhibitors. In this subset analysis, SFAR
entropy in the occipital region during REM sleep
continued to differentiate DEM from MCI and HC
groups (ANOVA, p = 0.0046; post hoc comparison
of DEM versus HC, p = 0.0031, Hedge’s g effect
size = 1.71; post hoc comparison of DEM versus
MCI, p = 0.031, Hedge’s g effect size = 0.96; Sup-
plementary Figure 2). Thus, the group differences
in SFAR entropy in REM sleep were not a result of
differential acetylcholinesterase inhibitor use.

Group differences in MFDE are stable across
REM cycles over the night

To determine whether the SFAR-entropy measure
during REM sleep might change with REM sleep
cycles over the night, we calculated SFAR-entropy
in the occipital region, in the first, middle, and last
5 min of REM sleep (Fig. 3A). The ANOVA p-values
were corrected based on the Bonferroni method for
three comparisons.

SFAR-entropy was stable across REM cycles
within diagnostic groups (corrected ANOVA
p-values<0.001), showing significant dif-
ferences between DEM and HC (post-hoc
p-values<0.0001), and between DEM and MCI
(post-hoc p-values<0.05) in each REM epoch.

We also compared these measures to SFAR-PSD
and relative alpha power calculated in the occipi-
tal regions in the same REM epochs. SFAR-PSD
showed statistically significant differences between
DEM and HC in the middle and last 5 min of REM
sleep (corrected ANOVA p-values<0.01, post-hoc
p-values<0.01; Fig. 3B). SFAR-PSD also showed sig-
nificant differences between DEM and MCI, but only
in the last REM epoch (post-hoc p-value = 0.021).
Relative alpha power in the occipital region was sta-
ble across REM epochs, with statistically significant
differences between DEM and HC across all epochs
(ANOVA p-values<0.01, post-hoc p-values<0.01;
Fig. 3C). Relative alpha power significantly differed
between HC and MCI in the middle REM epoch alone
(post-hoc p-value = 0.007).

To further evaluate the stability of the SFAR-
entropy, SFAR-PSD, and relative alpha power
measures during REM sleep, we examined their
coefficients of variation (CV; ratio of the standard
deviation to the mean) across REM sleep in HC,
MCI, and DEM participants (Table 2). Across all
diagnostic groups, the CV for SFAR-entropy was
significantly lower than the CV for SFAR-PSD and
relative alpha power. Thus, the SFAR-entropy mea-

sure showed greater stability during REM sleep than
SFAR-PSD and relative alpha power.

Comparison of MFDE to other entropy and
spectral measures in REM sleep

We next compared the MFDE-based SFAR-
entropy to other entropy measures, namely MFE
and MDE, and to spectral measures (SFAR-PSD,
relative delta power, and relative alpha power) in
REM sleep (Fig. 4). All measures were calculated
in the occipital region. While almost all measures
showed significant group differences between DEM
and MCI, and between DEM and HC, the entropy
measures (MFDE, MFE, and MDE) consistently
showed the greatest corrected effect sizes for the
discrimination of DEM from HC (Hedge’s g effect
sizes: MFDE, 1.61; MFE, 1.46; MDE, 1.56; SFAR-
PSD, 1.25; delta, 1.43; alpha, 1.34). Interestingly,
relative alpha power was the only measure that
showed a significant difference between MCI ver-
sus HC (p = 0.031), but this measure did not show
a significant difference between DEM versus MCI
(p = 0.17).

SFAR-entropy in REM sleep is significantly
correlated with global cognitive function

As the increases in low frequency EEG activ-
ity and reductions in higher frequency EEG activity
that we observed in DEM could provide a simple
quantitative measure of neural systems failure, we
next examined how SFAR-entropy, SFAR-PSD, and
relative alpha power in the occipital region during
REM sleep related to cognitive function as mea-
sured with the MoCA (Fig. 5). MoCA scores were
available for 91% of MCI and 63% of DEM, with
a mean time between EEG and cognitive testing of
101 ± 98 days. SFAR-entropy, SFAR-PSD, and rel-
ative alpha power were all significantly correlated
with MoCA score (SFAR-entropy correlation, Spear-
man ρ = –0.47, p = 0.0001; SFAR-PSD correlation,
Spearman ρ = –0.47, p = 0.0001; relative alpha power
correlation, Spearman ρ = +0.45, p = 0.0003).

Diagnostic classification based on SFAR-entropy
in REM sleep

We trained separate logistic regression mod-
els to classify DEM versus HC, DEM versus
MCI, and MCI versus HC, using either occipi-
tal SFAR-entropy or occipital SFAR-PSD as the
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Fig. 3. Assessment of SFAR-entropy and SFAR-PSD measures across REM cycles in the night. All measures were calculated in the occipital
region. A) The slow-to-fast activity ratio of MFDE (SFAR-entropy) for the first, middle, and last 5 min of REM sleep, for HC, MCI, and
DEM. B) SFAR-PSD for the first, middle, and last 5 min of REM sleep, for HC, MCI, and DEM. C) Relative alpha power for the first, middle,
and last 5 min of REM sleep, for HC, MCI, and DEM. The ANOVA omnibus p-value is listed in each boxplot (Bonferroni corrected). The
Tukey post-hoc comparisons with p-values smaller than 0.05, 0.01, 0.001, 0.0001, and 0.00001 are shown with *, **, ***, ****, and *****,
respectively.

Table 2
Coefficient of variation (CV) for SFAR-entropy, SFAR-PSD, and relative alpha power in HC, MCI, and DEM

SFAR-entropy SFAR-PSD Relative alpha power ANOVA p-value

CV in HC (mean ± SD) 0.06 ± 0.02 0.45 ± 0.40 0.24 ± 0.07 p = 1e-09;
entropy vs. PSD, p = 1e-09;

entropy vs. alpha, p = 0.0047;
PSD vs. alpha, p = 6e-04

CV in MCI (mean ± SD) 0.06 ± 0.03 0.40 ± 0.14 0.26 ± 0.06 p = 2e-18;
entropy vs. PSD, p = 1e-10;
entropy vs. alpha, p = 2e-09;

PSD vs. alpha, p = 4e-06
CV in DEM (mean ± SD) 0.06 ± 0.02 0.32 ± 0.10 0.26 ± 0.07 p = 1e-16;

entropy vs. PSD, p = 1e-10;
entropy vs. alpha, p = 1e-10;

PSD vs. alpha, p = 0.016

SD, standard deviation.

sole input feature. Model performances were com-
pared using cross-validated AUCROC and AUCPR
(Fig. 6). For discriminating DEM versus HC, the
SFAR-entropy model had excellent performance
based on the AUCROC (AUCROC = 0.870 [0.809,
0.925]), and performed significantly better than the
SFAR-PSD model (AUCROC = 0.802 [0.715, 0.883])

(p = 0.037). A similar trend was also seen with the
AUCPR, where the SFAR-entropy model had higher
performance than the SFAR-PSD model, though
this was not statistically significant (0.942 [0.888,
0.992] versus 0.894 [0.809, 0.981], respectively,
p = 0.102; AUCPR for chance-level performance =
0.648).
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Fig. 4. Comparison of MFDE to additional entropy and spectral measures in REM sleep to discriminate Alzheimer’s disease dementia. A)
Comparison of slow-to-fast activity ratio of various entropy measures, including MFDE, multiscale fuzzy entropy (MFE), and multiscale
dispersion entropy (MDE), to discriminate HC, MCI, and DEM in REM sleep. B) Comparison of spectral measures, including slow-to-fast
activity ratio of the PSD (SFAR-PSD), relative delta power, and relative alpha power, to discriminate HC, MCI, and DEM in REM sleep. For
(A) and (B), ANOVA p values are listed, and differences with p-values smaller than 0.05, 0.01, 0.001, 0.0001, and 0.00001 are respectively
shown with *, **, ***, ****, and *****. C) Relative power spectral density curves for HC (black), MCI (blue), and DEM (red).

Fig. 5. Correlation of SFAR-entropy, SFAR-PSD, and relative alpha with MoCA scores. SFAR-entropy (left), SFAR-PSD (middle), and
relative alpha (right) were calculated from the occipital region during REM sleep. Spearman correlations are shown.

For discriminating DEM versus MCI, the SFAR-
entropy model also performed well (AUCROC = 0.708
[0.580, 0.830]), and was significantly better than the

SFAR-PSD model (AUCROC = 0.590 [0.414, 0.744])
(p = 0.010). This difference was also seen with
the AUCPR, where the SFAR-entropy model out-
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Fig. 6. Classification performance of SFAR-entropy and SFAR-PSD in REM sleep in discriminating HC, MCI, and DEM. ROC (top row) and
PR (bottom row) curves for logistic regression classifiers based on SFAR-entropy (blue) and SFAR-PSD (red), for discrimination between
DEM versus HC (left), DEM versus MCI (middle), and MCI versus HC (right). Both SFAR-entropy and SFAR-PSD were calculated from
the occipital region during REM sleep. Shaded regions represent the 95% confidence intervals for each curve based on bootstrapping. Black
dashed lines represent the expected performance for a random classifier.

performed the SFAR-PSD model (AUCPR = 0.783
[0.636, 0.943] versus 0.651 [0.456, 0.840], p = 0.043;
AUCPR for chance-level performance = 0.536).

Both SFAR-entropy and SFAR-PSD performed
at only chance-level prediction in discriminat-
ing MCI versus HC (AUCROC = 0.517 [0.286,
0.738] and 0.498 [0.247, 0.737], respectively, and
AUCPR = 0.621 [0.431, 0.805] and 0.612 [0.408,
0.801], respectively, with AUCPR for chance-level
performance = 0.614).

Addition of demographic variables (age, sex,
and level of education) to the SFAR-entropy and
SFAR-PSD models did not significantly improve
the performance of either model. The relative alpha
power model had similar performance to the SFAR-
PSD model (DEM versus HC: AUCROC = 0.807
[0.722 0.887] and AUCPR = 0.892 [0.811, 0.977];
DEM versus MCI: AUCROC = 0.566 [0.359 0.771]
and AUCPR = 0.664 [0.441, 0.886], MCI versus HC:
AUCROC = 0.597 [0.463 0.722] and AUCPR = 0.692
[0.538, 0.844]).

Test-retest reliability

To assess the night-to-night test-retest reliability of
SFAR-entropy, SFAR-PSD, and relative alpha power,
we measured the Spearman correlation coefficient
(SCC) for 15 participants (7 HC, 5 MCI, and 3 DEM)
who each had two consecutive nights of EEG record-
ing. The SFAR-entropy, SFAR-PSD, and relative
alpha values at night 2 versus their corresponding val-
ues at night 1 are shown in Supplementary Figure 3.
The SCC values for SFAR-entropy, SFAR-PSD, and
relative alpha power, respectively, were 0.93, 0.81,
and 0.96. These results suggest that all three measures
have excellent night-to-night reliability.

DISCUSSION

In this study, we compared MFDE, a non-linear
measure of information content, on ambulatory
scalp EEGs of DEM, MCI, and HC individuals,
across awake and sleep states. We found that the
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slow-to-fast-activity MFDE ratio (SFAR-entropy)
differentiated DEM from both MCI and HC in REM
sleep. Just 5 min of REM sleep was sufficient for
SFAR-entropy to discriminate DEM from HC and
MCI, and this discriminatory power remained stable
across REM cycles throughout the night. Consistent
with prior work [47], SFAR-PSD during REM sleep
showed a similar capacity to distinguish DEM from
HC and MCI. Even so, the coefficient of variation
for SFAR-entropy in REM sleep was significantly
lower than for SFAR-PSD and relative alpha power,
and SFAR-entropy had a greater effect size for the
discrimination of DEM from HC. Increases in both
SFAR-entropy and SFAR-PSD and decreases in rel-
ative alpha power during REM sleep were associated
with worse performance on the MoCA. However,
logistic regression classifiers that used SFAR-entropy
as an input feature showed significantly better perfor-
mance in distinguishing DEM versus HC, and DEM
versus MCI, compared to classifiers that used SFAR-
PSD. Thus, while our results complement previous
reports showing that changes in slow-to-fast activ-
ity ratio in REM sleep based on PSD (SFAR-PSD)
can discriminate DEM from MCI and HC [32, 47,
59], SFAR-entropy outperformed SFAR-PSD on both
diagnostic classification accuracy and the extent of its
variability.

Although impairments of NREM sleep in AD are
well-described [19–25], AD-associated changes of
REM sleep have received little attention. Given that
basal forebrain cholinergic neurons that project dif-
fusely to cortex are particularly active in REM sleep
[29–31] and degenerate in AD [26–28], the fact that
discrimination between DEM and HC is greatest
in REM sleep is not unexpected. While basal fore-
brain cholinergic neurons are active in the awake
state, the rsEEG is also impacted by the activity of
other neuromodulatory systems such as the ascending
noradrenergic system that contributes to arousal and
attention. Thus, the EEG in REM sleep may be partic-
ularly well-suited to detect and study repercussions
of basal forebrain cholinergic dysfunction. Further-
more, as recent work has demonstrated a causal role
for REM sleep in learning and memory [60], the AD-
associated REM sleep SFAR-entropy deficits shown
here may bear directly on the neural systems failure
that contributes to dementia in AD.

In this study, 68% of DEM participants were tak-
ing acetylcholinesterase inhibitors at the time of their
EEG, compared to only 39% of MCI, and none of the
HC. Prior work in patients with mild to moderate
dementia due to AD showed that chronic treatment

with the acetylcholinesterase inhibitor, donepezil,
reduced delta and theta power and reduced SFAR-
PSD during REM sleep [61], effects which would
serve to diminish the difference in SFAR-entropy
between diagnostic groups. Thus, the “biological”
difference in SFAR-entropy between DEM and the
MCI and HC groups during REM sleep may be even
greater than that observed here. In any case, SFAR
entropy continued to differentiate DEM from MCI
and HC groups when the analyses were restricted to
participants who were not taking acetylcholinesterase
inhibitors. Interestingly, we found no consistent dif-
ferences between MCI and HC for SFAR-entropy
or SFAR-PSD across REM sleep or any sleep state.
While the basis for this observation is unclear, it
is worth noting that the differential use of acetyl-
cholinesterase inhibitors across MCI and HC groups
may have reduced the sensitivity of these measures
to differentiate these groups. In addition, as amyloid
burden in cognitively normal older people has been
associated with cortical synaptic cholinergic deficits
that may impact the EEG measures evaluated here
[62, 63], cortical amyloid among HC participants, if
present, may have reduced differences between MCI
and HC. Future studies that account for amyloid bur-
den and the integrity of the basal forebrain cholinergic
system will be informative.

While we used MFDE as our primary entropy mea-
sure, we found that other entropy measures, including
MFE and MDE, performed similarly. Thus, the reduc-
tion of entropy during REM sleep that we observed
in AD appears to be a robust phenomenon. From
the standpoint of computational cost and ease of cal-
culation, MFDE is superior to MFE and MDE [37,
38].

Strengths of this study include the evaluation of
well-characterized clinical populations of both DEM
and MCI. Participants were well-matched for age and
other demographic features. The evaluation of sleep
and wake EEG permitted detailed quantitative mea-
surements across behavioral states that have been
less well studied to date than conventional rsEEG.
In addition, to our knowledge, this is the first eval-
uation in AD of nonlinear EEG measures across a
range of biologically relevant time-scales, including
MFDE and its contrast with the SFAR-PSD, during
sleep. There were also a number of limitations. One
limitation is the use of clinically diagnosed groups,
without biomarker or neuropathologic confirmation.
Even so, patients were recruited from a tertiary care
center dementia facility and carefully reviewed by
two dementia specialists for inclusion in the study.
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Another limitation is the lack of sufficient data in the
NREM3 sleep state to permit its evaluation in the
current study. Although our sample sizes were mod-
est, potentially reducing the power to detect subtle
effects, the primary findings that demonstrated dis-
crimination of DEM from HC and MCI were robust.
Future work investigating the functional connectivity
and high-order interactions of sleep EEG brain net-
works with nonlinear methods in MCI and dementia
will be informative [64].

Together, the present findings support further study
of the EEG-based SFAR-entropy measure in REM
sleep, both as a diagnostic biomarker for early stages
of AD and as a physiologic measure reflecting neu-
ral systems integrity that may be prove useful in AD
clinical trials.
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Yener G, Guntekin B (2021) Measures of resting state
EEG rhythms for clinical trials in Alzheimer’s disease: Rec-

https://dx.doi.org/10.3233/JAD-221152


H. Azami et al. / EEG Entropy in REM Sleep in AD 1571

ommendations of an expert panel. Alzheimers Dement 17,
1528-1553.

[12] Meghdadi AH, Stevanović Karić M, McConnell M, Rupp
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